skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Outcomes and Insights from a Chocolate-based Undergraduate Materials Science Course and Other Topical Outreach Activities
ABSTRACT Those involved in STEM outreach, from elementary schools through undergraduate students, all use varying teaching styles in an effort to instruct and inspire students. However, it is incredibly difficult to gauge or compare learning outcomes from new teaching techniques in situ. In this work, we describe the outcomes of a new undergraduate mini-course at Johns Hopkins University, Chocolate: An Introduction to Materials Science. In particular, the outcomes of teaching binary phase diagrams in this course using topical food examples were compared to the outcomes of the same instructor teaching a similar control group of students using standard textbook examples, reducing a number of confounding factors and allowing us to objectively analyze the benefits of using an atypical, popular approach to teach a standard subject. Results indicate that the students in the Chocolate course were not only more excited and engaged in the lecture, but they had identical or potentially greater learning gains than the control group.  more » « less
Award ID(s):
1748262
PAR ID:
10054203
Author(s) / Creator(s):
Date Published:
Journal Name:
MRS Advances
ISSN:
2059-8521
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who were overwhelmed with parallel academic demands in other courses and different activities were underperforming via SPET-based learning strategies. SPET core functioning depends on the following steps: Step 1: Provide a set of conceptual and topical questions for students to answer individually after self-education from the recommended textbook or course material, Step-2: Group presentations are prepared by the prepared students for in-class discussion, Step-3: Group makes a presentation in class 1-2 weeks after the day of the assignment to seek instructor feedback and to do peer discussion. The instructor noted that students unfamiliar with the new concepts and terminologies in the SPET assignment struggled to respond to questions individually and contribute to the group discussion based on their presentation. Several motivated students who invested time in familiarizing new concepts and terminologies met or exceeded the expectations. However, a significant student population struggled. To alleviate this issue author has implemented a further improvement in SPET approach. This paper reports teaching experiments conducted in MECH 487 Photovoltaic Cells and Solar Thermal Energy System and MECH 462 Design of Energy Systems course. This improvement requires augmenting SPET with instructor-led concept familiarization discussion on the day of issuing the assignment or close to that; for this step instructor utilized exemplary student work from prior SPET-based teaching of the same course. In the survey, many students expressed their views about the improvement and reported introductory discussions were helpful and addressed several reservations and impediments students encountered. This paper will discuss the structure of the new improvement strategy and outcomes-including student feedback and comments. 
    more » « less
  2. Abstract Campus closures in Spring 2020 required rapid transition to online course delivery. Fall 2020 has similar needs and expectations. The Advanced Topics in Molecular Biology Techniques course, designed for upper division undergraduate and graduate students, uses a “journal club” format. The journal club format includes practice‐based learning and provides student choice. Examples from graduate students effectively model the expectations using near‐peer instruction. Teaching in the time of COVID‐19 requires openness to new ideas and modifications to previous approaches. We were able to move the course online with little interruption. 
    more » « less
  3. This research explores the role that place attachment and place meaning towards an urban farm play in predicting undergraduate students’ civic-mindedness, an important factor in sustainability and social change. In 2017 and 2018, three STEM courses at a private university in the Midwest incorporated a local urban farm as a physical and conceptual context for teaching course content and sustainability concepts. Each course included a four to six-week long place-based experiential learning (PBEL) module aimed at enhancing undergraduate STEM student learning outcomes, particularly place attachment, situated sustainability meaning-making (SSMM), and civic-mindedness. End-of-course place attachment, SSMM, and civic-mindedness survey data were collected from students involved in these courses and combined with institutionally provided demographic information. Place attachment and SSMM surveys, along with the course in which the students participated, were statistically significant predictors of students’ civic mindedness score. 
    more » « less
  4. This project supports the success of undergraduate engineering students through coordinated design of curricula across STEM course sequences. The Analysis, Design, Development, Implementation, Evaluation (ADDIE) framework and backward design are being used to develop guides for instructors to align learning outcomes, assessments, and instructional materials in a physics – engineering mechanics course sequence. The approach relies on the analysis of student learning outcomes in each course, identification of interdependent learning outcomes, and development of skills hierarchies in the form of visual learning maps. The learning maps are used to illustrate the knowledge required and built upon throughout the course sequence. This study will assess the effectiveness of a course redesign intervention, which uses visual learning maps and backward design concepts, to guide instructors within a common course sequence to align learning outcomes and assessments. If successful, the intervention is expected to improve students’ primary learning and knowledge retention, as well as persistence and success in the degree. The study will compare academic performance among Mechanical Engineering B.S., Environmental Engineering B.S., and Civil Engineering B.S. students who begin a Physics for Engineers – Statics – Dynamics course prior to the intervention (control) and after the intervention (treatment). During control and treatment terms, students’ primary learning in individual courses will be assessed using established concept inventories. Retention of knowledge from pre-requisite courses will be tracked using pre-identified problem sets (quizzes, exams) specifically associated with interdependent learning outcomes in the Statics and Dynamics courses. Students’ primary learning and knowledge retention in the sequence will be related to longer term student success outcomes, including retention and graduation. The poster will show the results of the research team’s first year of work, including an analysis of current course materials, learning maps for each course, identification of interdependent learning outcomes, example guiding materials and templates for instructors, and preliminary student performance data from the control cohort. 
    more » « less
  5. Climate change is a major concern to undergraduate students. Understanding climate change relies on an understanding of polar regions. However, courses on polar regions are rare at undergraduate institutions. Polar ENgagement through GUided INquiry (PENGUIN) modules were designed to give students experience with polar research in a variety of standard courses, including physics, computer science, physical chemistry, and economics, through using course-specific and computational tools to analyze polar data. Here, we present a new PENGUIN module taught in a statistics class, in which students apply statistical tools to ice core data to reconstruct past temperature records. Quantitative student responses on pre- and post-surveys were collected in a quasi-experimental context to assess student knowledge gains for a test group of 91 students and a control group of 73 students (who did not complete the module). Test-group students made statistically significant increases of 25 to 46% on all six statistics questions, with a normalized gain of 56%. By contrast, control group statistics knowledge gains ranged from −4 to 25%, with statistically significant increases for only three questions and a normalized gain of 22%. For polar research questions, the test group demonstrated increases in correct responses to polar research questions (11 to 31%), with statistically significant improvements (p < .05) of 22-31% on 3 of 6 polar research questions. These findings support the conclusion that PENGUIN modules can successfully teach course concepts while increasing polar literacy. 
    more » « less