skip to main content


Title: Bromide-assisted catalytic oxidation of lead( ii ) solids by chlorine in drinking water distribution systems
This study investigated the effect of bromide on the oxidation of three lead( ii ) solids by chlorine – a redox process critical to the control of lead release in drinking water distribution systems. Bromide had a strong catalytic effect on the oxidation of lead( ii ) carbonate solids, but had a limited impact on the oxidation of lead( ii ) phosphate.  more » « less
Award ID(s):
1653931
NSF-PAR ID:
10056152
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
53
Issue:
62
ISSN:
1359-7345
Page Range / eLocation ID:
8695 to 8698
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This study investigated the reaction kinetics on the oxidative transformation of lead( ii ) minerals by free chlorine (HOCl) and free bromine (HOBr) in drinking water distribution systems. According to chemical equilibrium predictions, lead( ii ) carbonate minerals, cerussite PbCO 3(s) and hydrocerussite Pb 3 (CO 3 ) 2 (OH) 2(s) , and lead( ii ) phosphate mineral, chloropyromorphite Pb 5 (PO 4 ) 3 Cl (s) are formed in drinking water distribution systems in the absence and presence of phosphate, respectively. X-ray absorption near edge spectroscopy (XANES) data showed that at pH 7 and a 10 mM alkalinity, the majority of cerussite and hydrocerussite was oxidized to lead( iv ) mineral PbO 2(s) within 120 minutes of reaction with chlorine (3 : 1 Cl 2  : Pb( ii ) molar ratio). In contrast, very little oxidation of chloropyromorphite occurred. Under similar conditions, oxidation of lead( ii ) carbonate and phosphate minerals by HOBr exhibited a reaction kinetics that was orders of magnitude faster than by HOCl. Their end oxidation products were identified as mainly plattnerite β-PbO 2(s) and trace amounts of scrutinyite α-PbO 2(s) based on X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. A kinetic model was established based on the solid-phase experimental data. The model predicted that in real drinking water distribution systems, it takes 0.6–1.2 years to completely oxidize Pb( ii ) minerals in the surface layer of corrosion scales to PbO 2(s) by HOCl without phosphate, but only 0.1–0.2 years in the presence of bromide (Br − ) due the catalytic effects of HOBr generation. The model also predicts that the addition of phosphate will significantly inhibit Pb( ii ) mineral oxidation by HOCl, but only be modestly effective in the presence of Br − . This study provides insightful understanding on the effect of residual disinfectant on the oxidation of lead corrosion scales and strategies to prevent lead release from drinking water distribution systems. 
    more » « less
  2. Abstract

    Total iron and total lead concentrations were correlated in water that had stagnated in laboratory‐scale experiments with sections of 10 harvested lead service lines (LSLs) from Providence, Rhode Island. One of these sections had much greater lead release and pH decrease during stagnation, and the inner surface of this service line had a thick coating of iron oxide scale. The iron‐rich scale was composed of coarse‐grained iron oxides (lepidocrocite and magnetite) covered with a thin lead‐bearing layer (hydrocerussite). Complementary batch experiments with pure iron oxides found that their surfaces accelerated the oxidation of Pb(II) from hydrocerussite, which produced PbO2(s)and decreased the pH. While the findings presented are for LSLs from Providence, the co‐occurrence of iron oxides and lead corrosion products is widespread. The results highlight the importance of considering iron corrosion when evaluating processes that control lead concentrations in tap water.

     
    more » « less
  3. Manganese (Mn) oxide solids widely exist in nature, serving as both electron donors and acceptors for a variety of redox reactions. Previous studies have highlighted the adsorption of dissolved organic matter (DOM) on Mn oxides, as well as the reduction of Mn oxides by DOM. Here, we show the underappreciated roles of photolytic reactions of DOM in Mn2+(aq) oxidation and its consequential formation of Mn oxide solids. During the photolysis of DOM, reactive intermediates including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2) can be generated. Among them, we found that O2•− was responsible for Mn oxidation. In addition, in the presence of bromide ions (Br−), the photolytic reactions between DOM and Br− formed reactive bromide radicals and facilitated the oxidation of Mn2+(aq) to Mn oxide solids. Moreover, the composition of DOM affected its oxidative capability. When DOM contained more aromatic functional groups, we observed more oxidation of Mn2+ to Mn oxides. These new findings advance our knowledge of natural Mn2+ oxidation and Mn(III/IV) oxide formation, as well as the hitherto overlooked oxidative role of DOM in the oxidation of metal ions in surface water under sunlight illumination. 
    more » « less
  4. Dissolved natural organic matter (DOM) is a complex matrix of organic matter that is ubiquitous in natural aquatic environments. So far, substantial research has been conducted on the DOM adsorption on Mn oxides as well as the reduction processes of Mn oxides by DOM. However, little is known about the oxidative roles of DOM in oxidizing Mn2+(aq) to Mn(III/IV) oxide solids. Sunlight-driven processes can initiate the degradation of DOM accompanied by the formation of photochemically produced reactive intermediates, including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2). Further, in the presence of halide ions, reactive halogen species can be generated by reactions between 3DOM* and halide ions, and by reactions between •OH and halide ions. In this study, we found that the solution pH controlled the oxidation of Mn2+(aq) to Mn oxide solids during photolysis of DOM. Among the reactive oxygen species, Mn2+(aq) was found to be oxidized to Mn oxide solids mainly by O2•−. The DOM with different quantities of aromatic functional groups affected its oxidative capability. With the addition of bromide ions (Br−), Mn2+(aq) oxidation was promoted further by formation Br radicals, which can also oxidize Mn2+(aq) to Mn oxide solids. These findings can help us better understand the oxidative role of DOM in the formation of Mn oxide solids in organic-rich surface water. In addition, this study assists in comprehending the impacts of the photolytic reactions between DOM and halide ions and their resulting reactive oxygen and halogen species on the oxidation and reduction processes of other transition metal oxides in the environment. 
    more » « less
  5. In meeting rapidly growing demands for energy and clean water, engineered systems such as unconventional oil and gas recovery and desalination processes produce large amounts of briny water. In the environment, these highly concentrated halides can be oxidized and transformed to reactive halogen radicals, whose roles in the degradation and transformation of organic pollutants have been studied. However, redox reactions between halogen radicals and heavy metal ions are still poorly understood. In this work, we found that aqueous manganese ions (Mn2+) could be oxidized to Mn oxide solids by reactive halogen radicals generated from reactions between halide ions and hydroxyl radicals or between halide ions and triplet state dissolved organic matter. In particular, more Mn2+ was oxidized by Br radicals generated from bromide ion (Br−) than by Cl radicals generated from chloride ion (Cl−), even though the concentrations of Br− in surface waters are much lower than Cl− concentrations. In addition, the highly concentrated halides greatly increased the ionic strength of the solution, affecting Mn2+ oxidation kinetics and the crystallinity and oxidation state of the newly formed Mn oxides. These newly discovered pathways involving Mn2+(aq) and reactive halogen radicals aid in understanding the generation of abiotic Mn oxide solids and forecasting their redox activities. Moreover, this work emphasizes the critical need for a better knowledge of the roles of reactive halogen radicals in inorganic redox reactions. 
    more » « less