skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drought in the northern Bahamas from 3300 to 2500 years ago
Intensification and western displacement of the North Atlantic Subtropical High (NASH) is projected for this century, which can decrease Caribbean and southeastern American rainfall on seasonal and annual timescales. However, additional hydroclimate records are needed from the northern Caribbean to understand the long-term behavior of the NASH, and better forecast its future behavior. Here we present a multi-proxy sinkhole lake reconstruction from a carbonate island that is proximal to the NASH (Abaco Island, The Bahamas). The reconstruction indicates the northern Bahamas experienced a drought from ∼3300 to ∼2500 Cal yrs BP, which coincides with evidence from other hydroclimate and oceanographic records (e.g., Africa, Caribbean, and South America) for a synchronous southern displacement of the Intertropical Convergence Zone and North Atlantic Hadley Cell. The specific cause of the hydroclimate change in the northeastern Caribbean region from ∼3300 to 2500 Cal yrs BP was probably coeval southern or western displacement of the NASH, which would have increased northeastern Caribbean exposure to subsiding air from higher altitudes.  more » « less
Award ID(s):
1703087
PAR ID:
10056333
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Quaternary science reviews
Volume:
186
ISSN:
1873-457X
Page Range / eLocation ID:
169-185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Meridional shifts of the North Atlantic Subtropical High (NASH) western edge create a dipole that drives hydroclimate variability in the southeastern United States and Caribbean region. Southwest displacements suppress rainfall in the southern Caribbean. Northwest displacements drive southeast United States and northern Caribbean drying. Projections for the 21st century suggest a more meridionally displaced NASH, which jeopardizes Caribbean island communities dependent on rain‐fed aquifers. While recent work indicates that Atlantic and Pacific Ocean‐atmosphere variability influenced the NASH during the instrumental period, little is known about NASH behavior and subsequent hydroclimate responses over longer timescales. To address this limitation, we developed a ∼6000‐years long rainfall record through the analysis of calcite raft deposits archived within sediments from a coastal sinkhole in the northeast Bahamas (Abaco Island). Increased (decreased) calcite raft deposition provides evidence for increased (decreased) rainfall driven by NASH variability. We use simulations from the Community Earth System Model to support this interpretation. These simulations improve our understanding of NASH behavior on timescales congruous with the reconstruction and suggest an important role for the state of the Pacific Ocean. Furthermore, model simulations and a compilation of regional hydroclimate reconstructions reveal that the NASH‐driven dipole dominates northern and southern Caribbean rainfall on centennial timescales. These results bring Holocene Caribbean hydroclimate variability into sharper focus while providing important context for present and future changes to regional climate. Additionally, this study highlights the need for improved future predictions of the state of the Pacific Ocean to best inform water scarcity mitigation strategies for at‐risk Caribbean communities. 
    more » « less
  2. The Late-Holocene history of hydroclimatic variability in the Atacama Desert offers insights into the effects of precipitation and humans on ecosystems in one of the most extremely arid regions of the world. However, understanding the effects of regional precipitation variability in relation to local ecological stressors remains to be fully resolved. Here, we present a pollen-based qualitative precipitation reconstruction derived from fossil rodent middens recovered from two sites near Laguna Roja (LRO; n = 25) and Isluga (ISL; n = 15) in the Atacama highlands (19°S) of northern Chile. At LRO, the fossil pollen record shows multi-centennial hydroclimatic anomalies during the last millennium, with wetter than present phases at 1155–1130, 865–670, and 215–80 cal yrs BP, and similar to present conditions between 1005 and 880 cal yrs BP. In contrast, the ISL record shows a wet phase during 1115–840 cal yrs BP, suggesting that meso-ecological processes were as important in vegetation turnover as regional hydroclimate anomalies. Wetter conditions derived from LRO partially overlap with the Medieval Climate Anomaly (865–670 cal yrs BP) and with the latest part of the Little Ice Age (215–80 cal yrs BP). Furthermore, no strong anthropogenic signal was identified possibly related to the remote location of the records. Palynological diversity analyses evidence increasing diversification of plant communities during wet events at both sites. In correlation to existing regional hydroclimatic records from the Western Andes, our precipitation reconstruction verifies that centennial-scale changes in the strength of the South American Summer Monsoon (SASM) and partial influence of El Niño-like (ENSO) conditions drove vegetation turnover in the Atacama Desert during the last millennium. 
    more » « less
  3. Sinkholes develop on carbonate landscapes when caves collapse and can subsequently become lake-like environments if they are flooded by local groundwater. Sediment cores retrieved from sinkholes have yielded high-resolution reconstructions of past environmental change, hydroclimate, and hurricane activity. However, our understanding of the internal sedimentary processes of these systems remains incomplete. Here, we use a multiproxy approach including sedimentology (stratigraphy, coarse-grained particle density, bulk organic matter content), micropaleontology (ostracods), and geochemistry (δ13C and δ2H on n-alkanoic acids) to reconstruct evidence for paleolimnology and regional hydroclimate from a continuous stratigraphic record (Emerald Pond sinkhole) in the northern Bahamas that spans the middle to late Holocene. Basal peat at 8.9 m below modern sea level documents the maximum sea-level position at ~ 8200 cal. yr BP. Subsequent upward vertical migration of the local aquifer caused by regional sea-level rise promoted carbonate-marl deposition from ~ 8300 to 1700 cal. yr BP. A shift in coarse particle deposition and ostracods at 5500 cal. yr BP suggests some environmental change, which may be related to one or multiple internal or external drivers. Sapropel deposition from ~ 1700 to 1300 cal. yr BP indicates a fundamental change in limnology to promote increased organic matter preservation, perhaps related to the regional cooling during the Dark Ages Cold Period. We find δ2H28 values are largely invariant from 7700 to 6150 cal. yr BP suggesting a generally stable hydroclimate (mean − 133‰, 1σ = 5‰). The shift to more depleted values (− 156‰, 1σ = 19‰) at ~ 6000–4800 cal. yr BP may be linked to a weakened (eastern displaced) North Atlantic Subtropical High. Nevertheless, additional local hydroclimate records are needed to better disentangle uncertainties from either internal or external influences on the resultant measurements. 
    more » « less
  4. Abstract We reconstructed hydroclimate variability in the Yucatán Peninsula (YP) based on stalagmite oxygen and carbon isotope records from a well-studied cave system located in the northeastern YP, a region strongly influenced by Caribbean climate dynamics. The new stalagmite isotopic records span the time interval between 43 and 26.6 ka BP, extending a previously published record from the same cave system covering the interval between 26.5 and 23.2 ka BP. Stalagmite stable isotope records show dominant decadal and multidecadal variability, and weaker variability on millennial timescales. These records suggest significant precipitation declines in the broader Caribbean region during Heinrich events 4 and 3 of ice-rafted discharge into the North Atlantic, in agreement with the antiphase pattern of precipitation variability across the equator suggested by previous studies. On millennial timescales, the stalagmite isotope records do not show the distinctive saw-tooth pattern of climate variability observed in Greenland during Dansgaard–Oeschger (DO) events, but a pattern similar to North Atlantic sea surface temperature (SST) variability. We propose that shifts in the mean position of the Intertropical Convergence Zone (ITCZ), per se, are not the dominant driver of last glacial hydroclimate variability in the YP on millennial timescales but instead that North Atlantic SSTs played a dominant role. Our results support a negative climate feedback mechanism whereby large low latitude precipitation deficits resulting from AMOC slowdown would lead to elevated salinity in the Caribbean and ultimately help reactivate AMOC and Caribbean precipitation. However, because of the unique drivers of future climate in the region, predicted twenty-first century YP precipitation reductions are unlikely to be modulated by this negative feedback mechanism. 
    more » « less
  5. Abstract We employed the modern analog technique to quantitatively reconstruct temperature and precipitation over the past 2500 yr based on fossil pollen records from six high-elevation lakes in northern Colorado. Reconstructed annual temperatures for the study area did not deviate significantly from modern over the past 2500 yr despite hemispheric expressions of Medieval Climate Anomaly warmth and Little Ice Age cooling. Annual precipitation, however, shifted from lower than modern rates from 2500 to 1000 cal yr BP to higher than modern rates after 1000 cal yr BP, a greater than 100 mm increase in precipitation. Winter precipitation accounts for the majority of the change in annual precipitation, while summer precipitation rates did not change significantly over the past 2500 yr. The large change in winter precipitation rates from the first to second millennium of the Common Era is inferred from a shift in fossil pollen assemblages dominated by subalpine conifers, which have southern sites as modern analogs, to assemblages representing open subalpine vegetation with abundant Artemisia spp. (sagebrush), which have more northern modern analogs. The change helps to explain regional increases in lake levels and shifts in some isotopic and tree-ring data sets, highlighting the risk of large reductions in snowpack and water supplies in the Intermountain West. 
    more » « less