skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydroclimate Dipole Drives Multi‐Centennial Variability in the Western Tropical North Atlantic Margin During the Middle and Late Holocene
Abstract Meridional shifts of the North Atlantic Subtropical High (NASH) western edge create a dipole that drives hydroclimate variability in the southeastern United States and Caribbean region. Southwest displacements suppress rainfall in the southern Caribbean. Northwest displacements drive southeast United States and northern Caribbean drying. Projections for the 21st century suggest a more meridionally displaced NASH, which jeopardizes Caribbean island communities dependent on rain‐fed aquifers. While recent work indicates that Atlantic and Pacific Ocean‐atmosphere variability influenced the NASH during the instrumental period, little is known about NASH behavior and subsequent hydroclimate responses over longer timescales. To address this limitation, we developed a ∼6000‐years long rainfall record through the analysis of calcite raft deposits archived within sediments from a coastal sinkhole in the northeast Bahamas (Abaco Island). Increased (decreased) calcite raft deposition provides evidence for increased (decreased) rainfall driven by NASH variability. We use simulations from the Community Earth System Model to support this interpretation. These simulations improve our understanding of NASH behavior on timescales congruous with the reconstruction and suggest an important role for the state of the Pacific Ocean. Furthermore, model simulations and a compilation of regional hydroclimate reconstructions reveal that the NASH‐driven dipole dominates northern and southern Caribbean rainfall on centennial timescales. These results bring Holocene Caribbean hydroclimate variability into sharper focus while providing important context for present and future changes to regional climate. Additionally, this study highlights the need for improved future predictions of the state of the Pacific Ocean to best inform water scarcity mitigation strategies for at‐risk Caribbean communities.  more » « less
Award ID(s):
1703087
PAR ID:
10444086
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
36
Issue:
7
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intensification and western displacement of the North Atlantic Subtropical High (NASH) is projected for this century, which can decrease Caribbean and southeastern American rainfall on seasonal and annual timescales. However, additional hydroclimate records are needed from the northern Caribbean to understand the long-term behavior of the NASH, and better forecast its future behavior. Here we present a multi-proxy sinkhole lake reconstruction from a carbonate island that is proximal to the NASH (Abaco Island, The Bahamas). The reconstruction indicates the northern Bahamas experienced a drought from ∼3300 to ∼2500 Cal yrs BP, which coincides with evidence from other hydroclimate and oceanographic records (e.g., Africa, Caribbean, and South America) for a synchronous southern displacement of the Intertropical Convergence Zone and North Atlantic Hadley Cell. The specific cause of the hydroclimate change in the northeastern Caribbean region from ∼3300 to 2500 Cal yrs BP was probably coeval southern or western displacement of the NASH, which would have increased northeastern Caribbean exposure to subsiding air from higher altitudes. 
    more » « less
  2. Uncertainty about the influence of anthropogenic radiative forcing on the position and strength of convective rainfall in the Intertropical Convergence Zone (ITCZ) inhibits our ability to project future tropical hydroclimate change in a warmer world. Paleoclimatic and modeling data inform on the timescales and mechanisms of ITCZ variability; yet a comprehensive, long-term perspective remains elusive. Here, we quantify the evolution of neotropical hydroclimate over the preindustrial past millennium (850 to 1850 CE) using a synthesis of 48 paleo-records, accounting for uncertainties in paleo-archive age models. We show that an interhemispheric pattern of precipitation antiphasing occurred on multicentury timescales in response to changes in natural radiative forcing. The conventionally defined “Little Ice Age” (1450 to 1850 CE) was marked by a clear shift toward wetter conditions in the southern neotropics and a less distinct and spatiotemporally complex transition toward drier conditions in the northern neotropics. This pattern of hydroclimatic change is consistent with results from climate model simulations indicating that a relative cooling of the Northern Hemisphere caused a southward shift in the thermal equator across the Atlantic basin and a southerly displacement of the ITCZ in the tropical Americas, with volcanic forcing as the principal driver. These findings are at odds with proxy-based reconstructions of ITCZ behavior in the western Pacific basin, where changes in ITCZ width and intensity, rather than mean position, appear to have driven hydroclimate transitions over the last millennium. This reinforces the idea that ITCZ responses to external forcing are region specific, complicating projections of the tropical precipitation response to global warming. 
    more » « less
  3. Abstract The paleoclimatic record from Mexico and Central America, or Mesoamerica, documents dramatic swings in hydroclimate over the past few millennia. However, the dynamics underlying these past changes remain obscure. We use proxy indicators of hydroclimate to show that last millennium hydroclimate variability was dominated by opposite‐signed moisture anomalies in northern and southern Mesoamerica. This pattern results from changes in moisture convergence driven by Atlantic‐Pacific interbasin temperature gradients. While this pattern is reproduced by several models and multiple experiments with a single model, models appear to disagree about the underlying dynamics of this interbasin gradient. Moreover, disagreement about the interbasin gradient, and associated hydroclimate pattern, dominates spread in 21st century regional hydroclimate projections. These results emphasize the role of interbasin asymmetries in governing past and future regional climate change. They also demonstrate that paleoclimate studies can elucidate mechanisms directly relevant to projecting future hydroclimate in climate change hot spots like Mesoamerica. 
    more » « less
  4. For the past few decades, many researchers have sought to understand how tropical hydroclimate responds to climate change via lakes, marine sediments, and speleothems records. Speleothem δ18O records throughout South America have shown that regional rainfall responds to Northern Hemisphere forcing on the millennial scale. Areas under the influence of the South Atlantic Convergence Zone (SACZ) have also shown a close relationship with local insolation on longer timescales. However, apart from the Cruz et al. (2007) record in Southern Brazil, long-term speleothem records throughout the continent have relied primarily on stable oxygen isotopes and are therefore limited to describing large-scale regional variability in rainfall. As such, many areas in South America still lack long-term records of local hydroclimate, which is critical to understanding how different components of the monsoon system respond to orbital and millennial-scale climate change. One proxy that has gained more attention in recent years is trace metal-to-calcium ratios (TM/Ca). Sr, Mg, and Ba to Ca ratios in speleothems are known in certain situations to respond to the degree of Prior Calcite Precipitation (PCP) above a drip site, a phenomenon directly tied to local aridity. In this study, we have obtained high-resolution TM/Ca measurements to pair with stable isotopes from samples spanning 23 to 66 ka from Huagapo Cave in the Peruvian Andes (11.27°S; 75.79°W). TM/Ca ratios in these samples are strongly correlated (R2>0.89), making them suitable for use as PCP proxies. We see that decreases in δ18O during Heinrich events are accompanied by a drop in TM/Ca. The period defined by the MIS 4/3 transition is accompanied by a simultaneous increase in TM/Ca and δ18O. TM/Ca and δ18O negatively correlate with local insolation for the entire record. Interestingly, the Paraíso Cave record from the Amazon Basin shows no correlation between regional or local hydroclimate and insolation during the last glacial period. The discrepancy between the two records and the close relationship between TM/Ca, δ18O, and local insolation in Huagapo samples, may call for a revised interpretation of Andes speleothem δ18O variability, which was originally thought to reflect rainout over the Amazon Basin. 
    more » « less
  5. Abstract Atlantic Niño is the Atlantic equivalent of El Niño-Southern Oscillation (ENSO), and it has prominent impacts on regional and global climate. Existing studies suggest that the Atlantic Niño may arise from local atmosphere-ocean interaction and is sometimes triggered by the Atlantic Meridional Mode (AMM), with overall weak ENSO contribution. By analyzing observational datasets and performing numerical model experiments, here we show that the Atlantic Niño can be induced by the Indian Ocean Dipole (IOD). We find that the enhanced rainfall in the western tropical Indian Ocean during positive IOD weakens the easterly trade winds over the tropical Atlantic, causing warm anomalies in the central and eastern equatorial Atlantic basin and therefore triggering the Atlantic Niño. Our finding suggests that the cross-basin impact from the tropical Indian Ocean plays a more important role in affecting interannual climate variability than previously thought. 
    more » « less