skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Learning Pose Grammar to Encode Human Body Configuration for 3D Pose Estimation
In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation. Our model directly takes 2D pose as input and learns a generalized 2D-3D mapping function. The proposed model consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bi-directional RNNs (BRNN) on the top to explicitly incorporate a set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor coordination). The proposed model thus enforces high-level constraints over human poses. In learning, we develop a pose sample simulator to augment training samples in virtual camera views, which further improves our model generalizability. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization capability of different methods.We empirically observe that most state-of-the-art methods encounter difficulty under such setting while our method can well handle such challenges.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
AAAI Conference on Artificial Intelligence
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing methods for pedestrian motion trajectory prediction are learning and predicting the trajectories in the 2D image space. In this work, we observe that it is much more efficient to learn and predict pedestrian trajectories in the 3D space since the human motion occurs in the 3D physical world and and their behavior patterns are better represented in the 3D space. To this end, we use a stereo camera system to detect and track the human pose with deep neural networks. During pose estimation, these twin deep neural networks satisfy the stereo consistence constraint. We adapt the existing SocialGAN method to perform pedestrian motion trajectory prediction from the 2D to the 3D space. Our extensive experimental results demonstrate that our proposed method significantly improves the pedestrian trajectory prediction performance, outperforming existing state-of-the-art methods. 
    more » « less
  2. This paper presents GoPose, a 3D skeleton-based human pose estimation system that uses WiFi devices at home. Our system leverages the WiFi signals reflected off the human body for 3D pose estimation. In contrast to prior systems that need specialized hardware or dedicated sensors, our system does not require a user to wear or carry any sensors and can reuse the WiFi devices that already exist in a home environment for mass adoption. To realize such a system, we leverage the 2D AoA spectrum of the signals reflected from the human body and the deep learning techniques. In particular, the 2D AoA spectrum is proposed to locate different parts of the human body as well as to enable environment-independent pose estimation. Deep learning is incorporated to model the complex relationship between the 2D AoA spectrums and the 3D skeletons of the human body for pose tracking. Our evaluation results show GoPose achieves around 4.7cm of accuracy under various scenarios including tracking unseen activities and under NLoS scenarios. 
    more » « less
  3. Prior work on 6-DoF object pose estimation has largely focused on instance-level processing, in which a textured CAD model is available for each object being detected. Category-level 6- DoF pose estimation represents an important step toward developing robotic vision systems that operate in unstructured, real-world scenarios. In this work, we propose a single-stage, keypoint-based approach for category-level object pose estimation that operates on unknown object instances within a known category using a single RGB image as input. The proposed network performs 2D object detection, detects 2D keypoints, estimates 6- DoF pose, and regresses relative bounding cuboid dimensions. These quantities are estimated in a sequential fashion, leveraging the recent idea of convGRU for propagating information from easier tasks to those that are more difficult. We favor simplicity in our design choices: generic cuboid vertex coordinates, single-stage network, and monocular RGB input. We conduct extensive experiments on the challenging Objectron benchmark, outperforming state-of-the-art methods on the 3D IoU metric (27.6% higher than the MobilePose single-stage approach and 7.1 % higher than the related two-stage approach). 
    more » « less
  4. null (Ed.)
    In this paper, we consider the problem of distributed pose graph optimization (PGO) that has extensive applications in multi-robot simultaneous localization and mapping (SLAM). We propose majorization minimization methods for distributed PGO and show that our proposed methods are guaranteed to converge to first-order critical points under mild conditions. Furthermore, since our proposed methods rely a proximal operator of distributed PGO, the convergence rate can be significantly accelerated with Nesterov’s method, and more importantly, the acceleration induces no compromise of theoretical guarantees. In addition, we also present accelerated majorization minimization methods for the distributed chordal initialization that have a quadratic convergence, which can be used to compute an initial guess for distributed PGO. The efficacy of this work is validated through applications on a number of 2D and 3D SLAM datasets and comparisons with existing state-of-the-art methods, which indicates that our proposed methods have faster convergence and result in better solutions to distributed PGO. 
    more » « less
  5. How to effectively represent camera pose is an essential problem in 3D computer vision, especially in tasks such as camera pose regression and novel view synthesis. Traditionally, 3D position of the camera is represented by Cartesian coordinate and the orientation is represented by Euler angle or quaternions. These representations are manually designed, which may not be the most effective representation for downstream tasks. In this work, we propose an approach to learn neural representations of camera poses and 3D scenes, coupled with neural representations of local camera movements. Specifically, the camera pose and 3D scene are represented as vectors and the local camera movement is represented as a matrix operating on the vector of the camera pose. We demonstrate that the camera movement can further be parametrized by a matrix Lie algebra that underlies a rotation system in the neural space. The vector representations are then concatenated and generate the posed 2D image through a decoder network. The model is learned from only posed 2D images and corresponding camera poses, without access to depths or shapes. We conduct extensive experiments on synthetic and real datasets. The results show that compared with other camera pose representations, our learned representation is more robust to noise in novel view synthesis and more effective in camera pose regression. 
    more » « less