skip to main content

Title: A Stochastic Attribute Grammar for Robust Cross-View Human Tracking
In computer vision, tracking humans across camera views remains challenging, especially for complex scenarios with frequent occlusions, significant lighting changes and other difficulties. Under such conditions, most existing appearance and geometric cues are not reliable enough to distinguish humans across camera views. To address these challenges, this paper presents a stochastic attribute grammar model for leveraging complementary and discriminative human attributes for enhancing cross-view tracking. The key idea of our method is to introduce a hierarchical representation, parse graph, to describe a subject and its movement trajectory in both space and time domains. This results in a hierarchical compositional representation, comprising trajectory entities of varying level, including human boxes, 3D human boxes, tracklets and trajectories. We use a set of grammar rules to decompose a graph node (e.g. tracklet) into a set of children nodes (e.g. 3D human boxes), and augment each node with a set of attributes, including geometry (e.g., moving speed, direction), accessories (e.g., bags), and/or activities (e.g., walking, running). These attributes serve as valuable cues, in addition to appearance features (e.g., colors), in determining the associations of human detection boxes across cameras. In particular, the attributes of a parent node are inherited by its children nodes, resulting in consistency constraints over the feasible parse graph. Thus, we cast cross-view human tracking as finding the most discriminative parse graph for more » each subject in videos. We develop a learning method to train this attribute grammar model from weakly supervised training data. To infer the optimal parse graph and its attributes, we develop an alternative parsing method that employs both top-down and bottom-up computations to search the optimal solution. We also explicitly reason the occlusion status of each entity in order to deal with significant changes of camera viewpoints. We evaluate the proposed method over public video benchmarks and demonstrate with extensive experiments that our method clearly outperforms state-of-theart tracking methods. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
IEEE transactions on circuits and systems for video technology
Sponsoring Org:
National Science Foundation
More Like this
  1. Networked data involve complex information from multifaceted channels, including topology structures, node content, and/or node labels etc., where structure and content are often correlated but are not always consistent. A typical scenario is the citation relationships in scholarly publications where a paper is cited by others not because they have the same content, but because they share one or multiple subject matters. To date, while many network embedding methods exist to take the node content into consideration, they all consider node content as simple flat word/attribute set and nodes sharing connections are assumed to have dependency with respect to allmore »words or attributes. In this paper, we argue that considering topic-level semantic interactions between nodes is crucial to learn discriminative node embedding vectors. In order to model pairwise topic relevance between linked text nodes, we propose topical network embedding, where interactions between nodes are built on the shared latent topics. Accordingly, we propose a unified optimization framework to simultaneously learn topic and node representations from the network text contents and structures, respectively. Meanwhile, the structure modeling takes the learned topic representations as conditional context under the principle that two nodes can infer each other contingent on the shared latent topics. Experiments on three real-world datasets demonstrate that our approach can learn significantly better network representations, i.e., 4.1% improvement over the state-of-the-art methods in terms of Micro-F1 on Cora dataset. (The source code of the proposed method is available through the github link: https://« less
  2. Attributed network embedding aims to learn low dimensional node representations by combining both the network's topological structure and node attributes. Most of the existing methods either propagate the attributes over the network structure or learn the node representations by an encoder-decoder framework. However, propagation based methods tend to prefer network structure to node attributes, whereas encoder-decoder methods tend to ignore the longer connections beyond the immediate neighbors. In order to address these limitations while enjoying the best of the two worlds, we design cross fusion layers for unsupervised attributed network embedding. Specifically, we first construct two separate views to handlemore »network structure and node attributes, and then design cross fusion layers to allow flexible information exchange and integration between the two views. The key design goals of the cross fusion layers are three-fold: 1) allowing critical information to be propagated along the network structure, 2) encoding the heterogeneity in the local neighborhood of each node during propagation, and 3) incorporating an additional node attribute channel so that the attribute information will not be overshadowed by the structure view. Extensive experiments on three datasets and three downstream tasks demonstrate the effectiveness of the proposed method.« less
  3. This paper first proposes a method of formulating model interpretability in visual understanding tasks based on the idea of unfolding latent structures. It then presents a case study in object detection using popular two-stage region-based convolutional neural network (i.e., R-CNN) detection systems. The proposed method focuses on weakly-supervised extractive rationale generation, that is learning to unfold latent discriminative part configurations of object instances automatically and simultaneously in detection without using any supervision for part configurations. It utilizes a top-down hierarchical and compositional grammar model embedded in a directed acyclic AND-OR Graph (AOG) to explore and unfold the space of latentmore »part configurations of regions of interest (RoIs). It presents an AOGParsing operator that seamlessly integrates with the RoIPooling /RoIAlign operator widely used in R-CNN and is trained end-to-end. In object detection, a bounding box is interpreted by the best parse tree derived from the AOG on-the-fly, which is treated as the qualitatively extractive rationale generated for interpreting detection. In experiments, Faster R-CNN is used to test the proposed method on the PASCAL VOC 2007 and the COCO 2017 object detection datasets. The experimental results show that the proposed method can compute promising latent structures without hurting the performance.« less
  4. In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation. Our model directly takes 2D pose as input and learns a generalized 2D-3D mapping function. The proposed model consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bi-directional RNNs (BRNN) on the top to explicitly incorporate a set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor coordination). The proposed model thus enforces high-level constraints over human poses. In learning, we develop a pose sample simulator to augment training samples in virtual camera views, which further improvesmore »our model generalizability. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization capability of different methods.We empirically observe that most state-of-the-art methods encounter difficulty under such setting while our method can well handle such challenges.« less
  5. Tracking humans that are interacting with the other subjects or environment remains unsolved in visual tracking, because the visibility of the human of interests in videos is unknown and might vary over time. In particular, it is still difficult for state-of-the-art human trackers to recover completely human trajectories in crowded scenes with frequent human interactions. In this work, we consider the visibility status of a subject as a fluent variable, whose change is mostly attributed to the subject’s interaction with the surrounding, e.g., crossing behind another object, entering a a building, or getting into a vehicle, etc. We introduce amore »Causal And-Or Graph (C-AOG) to represent the causal effect relations between an object’s visibility fluent and its activities, and develop a probabilistic graph model to jointly reason the visibility fluent change (e.g., from visible to invisible) and track humans in videos. We formulate this joint task as an iterative search of a feasible causal graph structure that enables fast search algorithm, e.g., dynamic programming method. We apply the proposed method to challenging video sequences to evaluate its capabilities of estimating visibility fluent changes of subjects and tracking subjects of interests over time. Results with comparisons demonstrate that our method outperforms the alternative trackers and can recover complete trajectories of humans in complicated scenarios with frequent human interactions« less