skip to main content

Title: Unsupervised Attributed Network Embedding via Cross Fusion
Attributed network embedding aims to learn low dimensional node representations by combining both the network's topological structure and node attributes. Most of the existing methods either propagate the attributes over the network structure or learn the node representations by an encoder-decoder framework. However, propagation based methods tend to prefer network structure to node attributes, whereas encoder-decoder methods tend to ignore the longer connections beyond the immediate neighbors. In order to address these limitations while enjoying the best of the two worlds, we design cross fusion layers for unsupervised attributed network embedding. Specifically, we first construct two separate views to handle network structure and node attributes, and then design cross fusion layers to allow flexible information exchange and integration between the two views. The key design goals of the cross fusion layers are three-fold: 1) allowing critical information to be propagated along the network structure, 2) encoding the heterogeneity in the local neighborhood of each node during propagation, and 3) incorporating an additional node attribute channel so that the attribute information will not be overshadowed by the structure view. Extensive experiments on three datasets and three downstream tasks demonstrate the effectiveness of the proposed method.
; ; ; ;
Award ID(s):
1947135 1939725
Publication Date:
Journal Name:
Page Range or eLocation-ID:
797 to 805
Sponsoring Org:
National Science Foundation
More Like this
  1. In the past decade, the amount of attributed network data has skyrocketed, and the problem of identifying their underlying group structures has received significant attention. By leveraging both attribute and link information, recent state-of-the-art network clustering methods have achieved significant improvements on relatively clean datasets. However, the noisy nature of real-world attributed networks has long been overlooked, which leads to degraded performance facing missing or inaccurate attributes and links. In this work, we overcome such weaknesses by marrying the strengths of clustering and embedding on attributed networks. Specifically, we propose GRACE (GRAph Clustering with Embedding propagation), to simultaneously learn networkmore »representations and identify network clusters in an end-to-end manner. It employs deep denoise autoencoders to generate robust network embeddings from node attributes, propagates the embeddings in the network to capture node interactions, and detects clusters based on the stable state of embedding propagation. To provide more insight, we further analyze GRACE in a theoretical manner and find its underlying connections with two canonical approaches for network modeling. Extensive experiments on six real-world attributed networks demonstrate the superiority of GRACE over various baselines from the state-of-the-art. Remarkably, GRACE improves the averaged performance of the strongest baseline from 0.43 to 0.52, yielding a 21% relative improvement. Controlled experiments and case studies further verify our intuitions and demonstrate the ability of GRACE to handle noisy information in real-world attributed networks.« less
  2. Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm formore »learning node representations from incomplete graphs. SINE formulates a probabilistic learning framework that separately models pairs of node-context and node-attribute relationships. Different from existing attributed network embedding algorithms, SINE provides greater flexibility to make the best of useful information and mitigate negative effects of missing information on representation learning. A stochastic gradient descent based online algorithm is derived to learn node representations, allowing SINE to scale up to large-scale networks with high learning efficiency. We evaluate the effectiveness and efficiency of SINE through extensive experiments on real-world networks. Experimental results confirm that SINE outperforms state-of-the-art baselines in various tasks, including node classification, node clustering, and link prediction, under settings with missing links and node attributes. SINE is also shown to be scalable and efficient on large-scale networks with millions of nodes/edges and high-dimensional node features.« less
  3. Networked data involve complex information from multifaceted channels, including topology structures, node content, and/or node labels etc., where structure and content are often correlated but are not always consistent. A typical scenario is the citation relationships in scholarly publications where a paper is cited by others not because they have the same content, but because they share one or multiple subject matters. To date, while many network embedding methods exist to take the node content into consideration, they all consider node content as simple flat word/attribute set and nodes sharing connections are assumed to have dependency with respect to allmore »words or attributes. In this paper, we argue that considering topic-level semantic interactions between nodes is crucial to learn discriminative node embedding vectors. In order to model pairwise topic relevance between linked text nodes, we propose topical network embedding, where interactions between nodes are built on the shared latent topics. Accordingly, we propose a unified optimization framework to simultaneously learn topic and node representations from the network text contents and structures, respectively. Meanwhile, the structure modeling takes the learned topic representations as conditional context under the principle that two nodes can infer each other contingent on the shared latent topics. Experiments on three real-world datasets demonstrate that our approach can learn significantly better network representations, i.e., 4.1% improvement over the state-of-the-art methods in terms of Micro-F1 on Cora dataset. (The source code of the proposed method is available through the github link: https://« less
  4. Most graph neural network models learn embeddings of nodes in static attributed graphs for predictive analysis. Recent attempts have been made to learn temporal proximity of the nodes. We find that real dynamic attributed graphs exhibit complex phenomenon of co-evolution between node attributes and graph structure. Learning node embeddings for forecasting change of node attributes and evolution of graph structure over time remains an open problem. In this work, we present a novel framework called CoEvoGNN for modeling dynamic attributed graph sequence. It preserves the impact of earlier graphs on the current graph by embedding generation through the sequence ofmore »attributed graphs. It has a temporal self-attention architecture to model long-range dependencies in the evolution. Moreover, CoEvoGNN optimizes model parameters jointly on two dynamic tasks, attribute inference and link prediction over time. So the model can capture the co-evolutionary patterns of attribute change and link formation. This framework can adapt to any graph neural algorithms so we implemented and investigated three methods based on it: CoEvoGCN, CoEvoGAT, and CoEvoSAGE. Experiments demonstrate the framework (and its methods) outperforms strong baseline methods on predicting an entire unseen graph snapshot of personal attributes and interpersonal links in dynamic social graphs and financial graphs.« less
  5. Abstract—Materials Genomics initiative has the goal of rapidly synthesizing materials with a given set of desired properties using data science techniques. An important step in this direction is the ability to predict the outcomes of complex chemical reactions. Some graph-based feature learning algorithms have been proposed recently. However, the comprehensive relationship between atoms or structures is not learned properly and not explainable, and multiple graphs cannot be handled. In this paper, chemical reaction processes are formulated as translation processes. Both atoms and edges are mapped to vectors represent- ing the structural information. We employ the graph convolution layers to learnmore »meaningful information of atom graphs, and further employ its variations, message passing networks (MPNN) and edge attention graph convolution network (EAGCN) to learn edge representations. Particularly, multi-view EAGCN groups and maps edges to a set of representations for the properties of the chemical bond between atoms from multiple views. Each bond is viewed from its atom type, bond type, distance and neighbor environment. The final node and edge representations are mapped to a sequence defined by the SMILES of the molecule and then fed to a decoder model with attention. To make full usage of multi-view information, we propose multi-view attention model to handle self correlation inside each atom or edge, and mutual correlation between edges and atoms, both of which are important in chemical reaction processes. We have evaluated our method on the standard benchmark datasets (that have been used by all the prior works), and the results show that edge embedding with multi-view attention achieves superior accuracy compared to existing techniques.« less