Poster Abstract: To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain expert scientists will have their own interfaces focusing on their specific needs.
more »
« less
Novel Network Services for Supporting Big Data Science Research
To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain-expert scientists will have their own interfaces focusing on their specific needs.
more »
« less
- Award ID(s):
- 1451024
- PAR ID:
- 10056969
- Date Published:
- Journal Name:
- Gateways 2017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated circuits between research facilities for transferring large amounts of data, by using advanced reservation systems. Intercontinental dedicated circuits typically require coordination between multiple administrative domains, which need to reach an agreement on a suitable advance reservation. The success rate of finding an advance reservation decreases as the number of participant domains increases for traditional systems because the circuit is composed over a single path. To improve provisioning of multi-domain advance reservations, we propose an architecture for end-to-end service orchestration in multi-domain science networks that leverages software-defined exchanges (SDX) for providing multi-path, multi-domain advance reservations. We have implemented an orchestrator for multi-path, multi-domain advance reservations and an SDX to support these services. Our orchestration architecture enables multi-path, multi-domain advance reservations and improves the reservation success rate from 50% in single path systems to 99% when four path are available.more » « less
-
De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)The Large Hadron Collider (LHC) experiments distribute data by leveraging a diverse array of National Research and Education Networks (NRENs), where experiment data management systems treat networks as a “blackbox” resource. After the High Luminosity upgrade, the Compact Muon Solenoid (CMS) experiment alone will produce roughly 0.5 exabytes of data per year. NREN Networks are a critical part of the success of CMS and other LHC experiments. However, during data movement, NRENs are unaware of data priorities, importance, or need for quality of service, and this poses a challenge for operators to coordinate the movement of data and have predictable data flows across multi-domain networks. The overarching goal of SENSE (The Software-defined network for End-to-end Networked Science at Exascale) is to enable National Labs and universities to request and provision end-to-end intelligent network services for their application workflows leveraging SDN (Software-Defined Networking) capabilities. This work aims to allow LHC Experiments and Rucio, the data management software used by CMS Experiment, to allocate and prioritize certain data transfers over the wide area network. In this paper, we will present the current progress of the integration of SENSE, Multi-domain end-to-end SDN Orchestration with QoS (Quality of Service) capabilities, with Rucio, the data management software used by CMS Experiment.more » « less
-
Science is being conducted in an era of information abundance. The rate at which science data is generated is increasing, both in volume and variety. This phenomenon is transforming how science is thought of and practiced. This transformation is being shaped by new scientific instruments that are being designed and deployed that will dramatically increase the need for large, real-time data transfers among scientists throughout the world. One such instrument is the Square Kilometer Array (SKA) being built in South Africa that will transmit approximately 160Gbps of data from each radio dish to a central processor. This paper describes a collaborative effort to respond to the demands of big data scientific instruments through the development of an international software defined exchange point (SDX) that will meet the network provisioning needs for science applications. This paper discusses the challenges of end-to-end path provisioning across multiple research and education networks using OpenFlow/SDN technologies. Furthermore, it refers to the AtlanticWave-SDX, a project at Florida International University and the Georgia Institute of Technology, funded by the US National Science Foundation (NSF), along with support from Brazil’s NREN, Rede Nacional de Ensino e Pesquisa (RNP, and the Academic Network of Sao Paulo (ANSP). Future work explores the feasibility of establishing an SDX in West Africa, in collaboration with regional African RENs, based on the planned availability of submarine cable spectrum for use by research and education communities.more » « less
-
It can take a domain scientist weeks to set up a circuit, meeting for hours with IT administrators to figure out exactly what is needed, approvals from their own campus along with the remote campuses to set up a simple circuit to transfer data between campuses on an ongoing basis. Talking about networks may as well be a foreign language to many domain scientists. As such, we need to make it easier for domain scientists to allocate and configure resources for scientific applications without needing to understand the details of bandwidth, circuits, and port numbers. This session will discuss the challenges in supporting domain science applications across long distances and multiple management domains. We will discuss the AtlanticWave/SDX project and how it approaches this problem, making it possible for a domain scientist with little networking know-how to create paths across an intercontinental network while making network administrators' lives easier in the process. We will focus on the tools being developed to manage the network, along with a practical demonstration spanning multiple SDN switches.more » « less
An official website of the United States government

