skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial effects of HF multiple scattering in the ionosphere: Experimental observations: MULTIPLE SCATTERING IN THE IONOSPHERE
Award ID(s):
0737625
PAR ID:
10057016
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Radio Science
Volume:
46
Issue:
4
ISSN:
0048-6604
Page Range / eLocation ID:
n/a to n/a
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a computational framework that incorporates multiple scattering for large-scale three-dimensional (3-D) particle localization using single-shot in-line holography. Traditional holographic techniques rely on single-scattering models that become inaccurate under high particle densities and large refractive index contrasts. Existing multiple scattering solvers become computationally prohibitive for large-scale problems, which comprise millions of voxels within the scattering volume. Our approach overcomes the computational bottleneck by slicewise computation of multiple scattering under an efficient recursive framework. In the forward model, each recursion estimates the next higher-order multiple scattered field among the object slices. In the inverse model, each order of scattering is recursively estimated by a nonlinear optimization procedure. This nonlinear inverse model is further supplemented by a sparsity promoting procedure that is particularly effective in localizing 3-D distributed particles. We show that our multiple-scattering model leads to significant improvement in the quality of 3-D localization compared to traditional methods based on single scattering approximation. Our experiments demonstrate robust inverse multiple scattering, allowing reconstruction of 100 million voxels from a single 1-megapixel hologram with a sparsity prior. The performance bound of our approach is quantified in simulation and validated experimentally. Our work promises utilization of multiple scattering for versatile large-scale applications. 
    more » « less
  2. Brenner, Susan (Ed.)
    This paper proposes a frequency-time hybrid solver for the time-dependent wave equation in two-dimensionalinterior spatial domains. The approach relies on four main elements, namely, (1) A multiple scattering strategy that decomposes a giveninteriortime-domain problem into a sequence oflimited-durationtime-domain problems of scattering by overlapping open arcs, each one of which is reduced (by means of the Fourier transform) to a sequence ofHelmholtz frequency-domain problems; (2) Boundary integral equations on overlapping boundary patches for the solution of the frequency-domain problems in point (1); (3) A smooth“Time-windowing and recentering”methodology that enables both treatment of incident signals of long duration and long time simulation; and, (4) A Fourier transform algorithm that delivers numerically dispersionless,spectrally-accurate time evolutionfor given incident fields. By recasting the interior time-domain problem in terms of a sequence of open-arc multiple scattering events, the proposed approach regularizes the full interior frequency domain problem—which, if obtained by either Fourier or Laplace transformation of the corresponding interior time-domain problem, must encapsulate infinitely many scattering events, giving rise to non-uniqueness and eigenfunctions in the Fourier case, and ill conditioning in the Laplace case. Numerical examples are included which demonstrate the accuracy and efficiency of the proposed methodology. 
    more » « less