skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple-scattering frequency-time hybrid solver for the wave equation in interior domains
This paper proposes a frequency-time hybrid solver for the time-dependent wave equation in two-dimensionalinterior spatial domains. The approach relies on four main elements, namely, (1) A multiple scattering strategy that decomposes a giveninteriortime-domain problem into a sequence oflimited-durationtime-domain problems of scattering by overlapping open arcs, each one of which is reduced (by means of the Fourier transform) to a sequence ofHelmholtz frequency-domain problems; (2) Boundary integral equations on overlapping boundary patches for the solution of the frequency-domain problems in point (1); (3) A smooth“Time-windowing and recentering”methodology that enables both treatment of incident signals of long duration and long time simulation; and, (4) A Fourier transform algorithm that delivers numerically dispersionless,spectrally-accurate time evolutionfor given incident fields. By recasting the interior time-domain problem in terms of a sequence of open-arc multiple scattering events, the proposed approach regularizes the full interior frequency domain problem—which, if obtained by either Fourier or Laplace transformation of the corresponding interior time-domain problem, must encapsulate infinitely many scattering events, giving rise to non-uniqueness and eigenfunctions in the Fourier case, and ill conditioning in the Laplace case. Numerical examples are included which demonstrate the accuracy and efficiency of the proposed methodology.  more » « less
Award ID(s):
2109831
PAR ID:
10516799
Author(s) / Creator(s):
;
Corporate Creator(s):
Editor(s):
Brenner, Susan
Publisher / Repository:
Mathematics of Computation
Date Published:
Journal Name:
Mathematics of Computation
Edition / Version:
1
Volume:
93
Issue:
346
ISSN:
0025-5718
Page Range / eLocation ID:
551 to 587
Subject(s) / Keyword(s):
MULTIPLE-SCATTERING wave equation
Format(s):
Medium: X Size: 41MB Other: pdf
Size(s):
41MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Bruno, Oscar; Pandey, Ambuj (Ed.)
    This paper presents a fast high-order method for the solution of two-dimensional problems of scattering by penetrable inhomogeneous media, with application to high-frequency configurations containing (possibly) discontinuous refractivities. The method relies on a hybrid direct/iterative combination of 1)~A differential volumetric formulation (which is based on the use of appropriate Chebyshev differentiation matrices enacting the Laplace operator) and, 2)~A second-kind boundary integral formulation (which, once again, utilizes Chebyshev discretization, but, in this case, in the boundary-integral context). The approach enjoys low dispersion and high-order accuracy for smooth refractivities, as well as second-order accuracy (while maintaining low dispersion) in the discontinuous refractivity case. The solution approach proceeds by application of Impedance-to-Impedance (ItI) maps to couple the volumetric and boundary discretizations. The volumetric linear algebra solutions are obtained by means of a multifrontal solver, and the coupling with the boundary integral formulation is achieved via an application of the iterative linear-algebra solver GMRES. In particular, the existence and uniqueness theory presented in the present paper provides an affirmative answer to an open question concerning the existence of a uniquely solvable second-kind ItI-based formulation for the overall scattering problem under consideration. Relying on a modestly-demanding scatterer-dependent precomputation stage (requiring in practice a computing cost of the order of $$O(N^{\alpha})$$ operations, with $$\alpha \approx 1.07$$, for an $$N$$-point discretization \textcolor{black}{and for the relevant Chebyshev accuracy orders $$q$$ used)}, together with fast ($O(N)$-cost) single-core runs for each incident field considered, the proposed algorithm can effectively solve scattering problems for large and complex objects possibly containing discontinuities and strong refractivity contrasts. 
    more » « less
  2. null (Ed.)
    In this paper, we develop a conceptually unified approach for characterizing and determining scattering poles and interior eigenvalues for a given scattering problem. Our approach explores a duality stemming from interchanging the roles of incident and scattered fields in our analysis. Both sets are related to the kernel of the relative scattering operator mapping incident fields to scattered fields, corresponding to the exterior scattering problem for the interior eigenvalues and the interior scattering problem for scattering poles. Our discussion includes the scattering problem for a Dirichlet obstacle where duality is between scattering poles and Dirichlet eigenvalues, and the inhomogeneous scattering problem where the duality is between scattering poles and transmission eigenvalues. Our new characterization of the scattering poles suggests a numerical method for their computation in terms of scattering data for the corresponding interior scattering problem. 
    more » « less
  3. Consider the elastic scattering of a plane or point incident wave by an unbounded and rigid rough surface. The angular spectrum representation (ASR) for the time-harmonic Navier equation is derived in three dimensions. The ASR is utilized as a radiation condition to the elastic rough surface scattering problem. The uniqueness is proved through a Rellich-type identity for surfaces given by uniformly Lipschitz functions. In the case of flat surfaces with local perturbations, an equivalent variational formulation is deduced in a truncated bounded domain and the existence of solutions are shown for general incoming waves. The main ingredient of the proof is the radiating behavior of the Green tensor to the first boundary value problem of the Navier equation in a half-space. 
    more » « less
  4. We present an algorithm for the computation of scattering poles for an impenetrable obstacle with Dirichlet or Robin boundary conditions in acoustic scattering. This paper builds upon the previous work of Cakoni et al. (2020) titled ‘A duality between scattering poles and transmission eigenvalues in scattering theory’ (Cakoni et al. 2020 Proc. A. 476, 20200612 (doi:10.1098/rspa.2020.0612)), where the authors developed a conceptually unified approach for characterizing the scattering poles and interior eigenvalues corresponding to a scattering problem. This approach views scattering poles as dual to interior eigenvalues by interchanging the roles of incident and scattered fields. In this framework, both sets are linked to the kernel of the relative scattering operator that maps incident fields to scattered fields. This mapping corresponds to the exterior scattering problem for the interior eigenvalues and the interior scattering problem for scattering poles. Leveraging this dual characterization and inspired by the generalized linear sampling method for computing the interior eigenvalues, we present a novel numerical algorithm for computing scattering poles without relying on an iterative scheme. Preliminary numerical examples showcase the effectiveness of this computational approach. 
    more » « less
  5. Neural oscillations are widely studied using methods based on the Fourier transform, which models data as sums of sinusoids. This has successfully uncovered numerous links between oscillations and cognition or disease. However, neural data are nonsinusoidal, and these nonsinusoidal features are increasingly linked to a variety of behavioral and cognitive states, pathophysiology, and underlying neuronal circuit properties. Here, we present a new analysis framework-one that is complementary to existing Fourier- and Hilbert-transform based approaches-that quantifies oscillatory features in the time domain, on a cycle-by-cycle basis. We have released this cycle-by-cycle analysis suite as bycycle, a fully documented, open-source Python package with detailed tutorials and troubleshooting cases. This approach performs tests to assess whether an oscillation is present at any given moment and, if so, quantifies each oscillatory cycle by its amplitude, period, and waveform symmetry, the latter of which is missed using conventional approaches. In a series of simulated event-related studies, we show how conventional Fourier- and Hilbert-transform approaches can conflate event-related changes in oscillation burst duration as increased oscillatory amplitude and as a change in the oscillation frequency, even though those features were unchanged in simulation. Our approach avoids these errors. Further, we validate this approach in simulation and against experimental recordings of patients with Parkinson's disease, who are known to have nonsinusoidal beta (12-30 Hz) oscillations. 
    more » « less