skip to main content


Title: Annual Occurrence Rates of Ionospheric Polar Cap Patches Observed Using Swarm: Annual Occurrence Rates of Ionospheric Polar Cap Patches Observed Using Swarm
Dense, fast-moving regions of ionization called polar cap patches are known to occur in thehigh-latitudeFregion ionosphere. Patches are widely believed to be caused by convection of dense, sunlitplasma into a dark and therefore low-density polar cap ionosphere. This leads to the belief that patches are awinter phenomenon. Surprisingly, a long-term analysis of 3 years of ionospheric measurements from theSwarm satellites shows that large density enhancements occur far more frequently in local summer than localwinter in the Southern Hemisphere (SH). The reverse is true in the Northern Hemisphere (NH). Previouslyreported patch detections in the SH are reexamined. Detection algorithms using only a relative doubling testcount very small densityfluctuations in SH winter due to extremely low ambient densities found there,while much larger enhancements occurring in SH summer are missed due to especially high ambientdensities. The same problem does not afflict results in the NH, where ambient densities are more stableyear-round due to the ionospheric annual asymmetry. Given this new analysis, the definition of a patch as adoubling of the ambient density is not suitable for the SH. We propose a test for patches linked to long-termaveraged solarflux activity, characterized by the 81 day centered meanF10.7index. Importantly, thecurrent patch formation theory is at least incomplete in that it does not predict the observed lack of patchesin SH winter, or the many large enhancements seen in SH summer  more » « less
Award ID(s):
1643773
NSF-PAR ID:
10057296
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction: Magnetopause reconnection is known to impact the dayside ionosphere by driving fast ionospheric flows, auroral transients, and high-density plasma structures named polar cap patches. However, most of the observed reconnection impact is limited to one hemisphere, and a question arises as to how symmetric the impact is between hemispheres. Methods: We address the question using interhemispheric observations of poleward moving radar auroral forms (PMRAFs), which are a “fossil” signature of magnetopause reconnection, during a geomagnetic storm. We are particularly interested in the temporal repetition and spatial structure of PMRAFs, which are directly affected by the temporal and spatial variation of magnetopause reconnection. PMRAFs are detected and traced using SuperDARN complemented by DMSP, Swarm, and GPS TEC measurements. Results: The results show that PMRAFs occurred repetitively on time scales of about 10 min. They were one-to-one related to pulsed ionospheric flows, and were collocated with polar cap patches embedded in a Tongue of Ionization. The temporal repetition of PMRAFs exhibited a remarkably high degree of correlation between hemispheres, indicating that PMRAFs were produced at a similar rate, or even in close synchronization, in the two hemispheres. However, the spatial structure exhibited significant hemispherical asymmetry. In the Northern Hemisphere, PMRAFs/patches had a dawn-dusk elongated cigar shape that extended >1,000 km, at times reaching >2,000 km, whereas in the Southern Hemisphere, PMRAFs/patches were 2–3 times shorter. Conclusion: The interesting symmetry and asymmetry of PMRAFs suggests that both magnetopause reconnection and local ionospheric conditions play important roles in determining the degree of symmetry of PMRAFs/patches. 
    more » « less
  2. Abstract

    Much theoretical and observational work has been devoted to studying the occurrence ofFregion polar cap patches in the Northern Hemisphere; considerably less work has been applied to the Southern Hemisphere. In recent years, the Madrigal database of mappings of total electron content (TEC) has improved in Southern Hemisphere coverage, to the point that we can now carry out a study of patch frequency and occurrence. We find that Southern Hemisphere patch occurrence is very similar to that of the Northern Hemisphere with a half‐year offset, plus an offset in universal time of approximately 12 hr. This is further supported by running an ionospheric model for both hemispheres and applying the same patch‐to‐background technique. Further, we present a simple physical mechanism involving a sunlit dayside plasma source concurrent with a dark polar cap, which yields a patch‐to‐background pattern very much like that seen in the TEC mappings for both hemispheres.

     
    more » « less
  3. Abstract

    The ionospheric density displays hemispheric asymmetries in the polar region due to various hemispheric differences, for example, in the offset between geographic and geomagnetic poles and in the geomagnetic field strength. Using ground‐based ionospheric measurements from Vertical Incidence Pulsed Ionospheric Radar with Dynasonde analysis at Jang Bogo Station (JBS), Antarctica and from EISCAT Svalbard Radar (ESR) where both sites are located mostly in the polar cap, we investigate the hemispheric differences in the ionospheric density between the northern and southern hemispheres for geomagnetically quiet and solar minimum condition. The results are also compared with Thermosphere Ionosphere Electrodynamic Global Circulation Model (TIEGCM) simulations. The observations show larger density and stronger diurnal and seasonal variations at JBS in the southern hemisphere than at Svalbard in the northern hemisphere. The diurnal variations of the density peak height are also observed to be much larger at JBS. In both hemispheres, the ionospheric density is significantly reduced in winter due to the limited solar production at high geographic latitudes, but TIEGCM considerably overestimates winter density, which is even larger than summer density, especially in the northern hemisphere. Also existed are the differences in the equinoctial asymmetry between the observations and the simulations: the daytime F‐region density is observed to be larger in fall than in spring in both hemispheres, but TIEGCM shows the opposite. In general, most of the observed asymmetrical density are much weaker in the model simulation, which may result from lack of proper magnetospheric forcings and neutral dynamics in the model.

     
    more » « less
  4. Abstract

    Discrete high‐density plasma structures in the Earth's ionosphere that convect across the polar cap from the dayside to nightside are known as polar cap patches. This high‐latitude phenomenon can interfere and disrupt satellite and high‐frequency (HF) communications when the associated sharp electron density gradients are encountered, and therefore, accurate modeling and forecasting of such events would be greatly beneficial. In this study, we have utilized the assimilative Global Positioning System Ionospheric Inversion (GPSII) method to reconstruct the high‐latitude ionosphere utilizing data from Global Navigation Satellite System (GNSS) receivers, vertical ionosondes, the Resolute Bay Incoherent Scatter Radar (RISR‐N), in situ satellite data, and Super Dual Auroral Radar Network (SuperDARN) radars. The novel method of assimilating RISR‐N and SuperDARN ground scatter measurements helps to increase the limited number of observations at high latitudes. The reconstructed polar cap patches are shown to correspond with ground‐ and spaced‐based observations, illustrating the ability of utilizing GPSII to study the complex high‐latitude region.

     
    more » « less
  5. Abstract

    In this study, we present the results of an inversion of ionospheric phase scintillation data to characterize the plasma density irregularity parameters for the structures associated with a series of Polar Cap Patches. The parameter estimates obtained during the inversion suggests that the irregularities associated with Polar Cap Patches are predominantly composed of moderately elongated electron density rods aligned with the earth's magnetic field which in some instances are interbedded within sheet and wing like density structures. Analysis of the spatial and temporal distribution of the axial ratio (AXRs), which are the ratios of irregularity elongation parallel and perpendicular to the field, indicates that the measured phase scintillation indices increase roughly proportionally with AXR values for the rods but remain roughly constant for wings and sheets. These findings indicate that while wings and sheets can produce phase fluctuations, it is the apparent existence of rods that mark the occurrence of plasma processes that lead to the formation of field‐aligned irregularities that produce phase scintillations which are most significant.

     
    more » « less