skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-Energy Deep Belief Networks using Intrinsic Sigmoidal Spintronic-based Probabilistic Neurons
A low-energy hardware implementation of deep belief network (DBN) architecture is developed using near-zero energy barrier probabilistic spin logic devices (p-bits), which are modeled to real- ize an intrinsic sigmoidal activation function. A CMOS/spin based weighted array structure is designed to implement a restricted Boltzmann machine (RBM). Device-level simulations based on precise physics relations are used to validate the sigmoidal relation between the output probability of a p-bit and its input currents. Characteristics of the resistive networks and p-bits are modeled in SPICE to perform a circuit-level simulation investigating the performance, area, and power consumption tradeoffs of the weighted array. In the application-level simulation, a DBN is implemented in MATLAB for digit recognition using the extracted device and circuit behavioral models. The MNIST data set is used to assess the accuracy of the DBN using 5,000 training images for five distinct network topologies. The results indicate that a baseline error rate of 36.8% for a 784x10 DBN trained by 100 samples can be reduced to only 3.7% using a 784x800x800x10 DBN trained by 5,000 input samples. Finally, Power dissipation and accuracy tradeoffs for probabilistic computing mechanisms using resistive devices are identified.  more » « less
Award ID(s):
1739635
PAR ID:
10057857
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Great Lakes Symposium on VLSI
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnetic Random-Access Memory (MRAM) based p-bit neuromorphic computing devices are garnering increasing interest as a means to compactly and efficiently realize machine learning operations in Restricted Boltzmann Machines (RBMs). When embedded within an RBM resistive crossbar array, the p-bit based neuron realizes a tunable sigmoidal activation function. Since the stochasticity of activation is dependent on the energy barrier of the MRAM device, it is essential to assess the impact of process variation on the voltage-dependent behavior of the sigmoid function. Other influential performance factors arise from varying energy barriers on power consumption requiring a simulation environment to facilitate the multi-objective optimization of device and network parameters. Herein, transportable Python scripts are developed to analyze the output variation under changes in device dimensions on the accuracy of machine learning applications. Evaluation with RBM circuits using the MNIST dataset reveal impacts and limits for processing variation of device fabrication in terms of the resulting energy vs. accuracy tradeoffs, and the resulting simulation framework is available via a Creative Commons license. 
    more » « less
  2. This paper presents a design approach for the modeling and simulation of ultra-low power (ULP) analog computing machine learning (ML) circuits for seizure detection using EEG signals in wearable health monitoring applications. In this paper, we describe a new analog system modeling and simulation technique to associate power consumption, noise, linearity, and other critical performance parameters of analog circuits with the classification accuracy of a given ML network, which allows to realize a power and performance optimized analog ML hardware implementation based on diverse application-specific needs. We carried out circuit simulations to obtain non-idealities, which are then mathematically modeled for an accurate mapping. We have modeled noise, non-linearity, resolution, and process variations such that the model can accurately obtain the classification accuracy of the analog computing based seizure detection system. Noise has been modeled as an input-referred white noise that can be directly added at the input. Device process and temperature variations were modeled as random fluctuations in circuit parameters such as gain and cut-off frequency. Nonlinearity was mathematically modeled as a power series. The combined system level model was then simulated for classification accuracy assessments. The design approach helps to optimize power and area during the development of tailored analog circuits for ML networks with the ability to potentially trade power and performance goals while still ensuring the required classification accuracy. The simulation technique also enables to determine target specifications for each circuit block in the analog computing hardware. This is achieved by developing the ML hardware model, and investigating the effect of circuit nonidealities on classification accuracy. Simulation of an analog computing EEG seizure detection block shows a classification accuracy of 91%. The proposed modeling approach will significantly reduce design time and complexity of large analog computing systems. Two feature extraction approaches are also compared for an analog computing architecture. 
    more » « less
  3. In this paper, a probabilistic interpolation recoder (PIR) circuit is developed for deep belief networks (DBNs) with probabilistic spin logic (p-bit)-based neurons. To verify the functionality and evaluate the performance of the PIRs, we have implemented a 784 × 200 × 10 DBN circuit in SPICE for a pattern recognition application using the MNIST dataset. The PIR circuits are leveraged in the last hidden layer to interpolate the probabilistic output of the neurons, which are representing different output classes, through sampling the p-bit’s output values and then counting them in a defined sampling time window. The PIR circuit is proposed as an alternative for conventional interpolation methods which were based on using a resistor capacitor tank to integrate each neuron’s output, followed by an analog-to-digital converter to generate the digital output. The circuit simulation results of PIR circuit exhibit at least 54%, 81%, and 78% reductions in power, energy, and energy-error-product, respectively, compared to previous techniques, without using any of the area-consuming analog components in the interpolation circuit. In addition, PIR circuits provide an inherent single stuck at fault tolerant feature to mitigate both transient and permanent faults at the circuit’s output. Reliability properties of the PIR circuits for single stuck-at faults are shown to be enhanced relative to conventional interpolation without requiring hardware redundancy. 
    more » « less
  4. Probabilistic spin logic (PSL) has recently been proposed as a novel computing paradigm that leverages random thermal fluctuations of interacting bodies in a system rather than deterministic switching of binary bits. A PSL circuit is an interconnected network of thermally unstable units called probabilistic bits (p-bits), whose output randomly fluctuates between bits 0 and 1. While the fluctuations generated by p-bits are thermally driven, and therefore, inherently stochastic, the output probability is tunable with an external source. Therefore, information is encoded through probabilities of various configuration of states in the network. Recent studies have shown that these systems can efficiently solve various types of combinatorial optimization problems and Bayesian inference problems that modern computers are unfit for. Previous experimental studies have demonstrated that a single magnetic tunnel junctions (MTJ) designed to be thermally unstable can operate tunable random number generator making it an ideal hardware solution for p-bits. Most proposals for designing an MTJ to operate as a p-bit involve patterning the MTJ as a circular nano-pillar to make the device thermally unstable and then use spin transfer torque (STT) as a tuning mechanism. However, the practical realization of such devices is very challenging since the fluctuation rate of these devices are very sensitive to any device variations or defects caused during fabrication. Despite this challenge, MTJs are still the most promising hardware solution for p-bits because MTJs are very unique in that they can be tuned by multiple other mechanisms such spin orbit torque, magneto-electric coupling, and voltage-controlled exchange coupling. Furthermore, multiple forces can be used simultaneously to drive stochastic switching signals in MTJs. This means there are a large number of methods to tune, or termed as bias, MTJs that can be implemented in p-bit circuits that can alleviate the current challenges of conventional STT driven p-bits. This article serves as a review of all of the different methods that have been proposed to drive random fluctuations in MTJs to operate as a probabilistic bit. Not only will we review the single-biasing mechanisms, but we will also review all the proposed dual-biasing methods, where two independent mechanisms are employed simultaneously. These dual-biasing methods have been shown to have certain advantages such as alleviating the negative effects of device variations and some biasing combinations have a unique capability called ‘two-degrees of tunability’, which increases the information capacity in the signals generated. 
    more » « less
  5. Promising for digital signal processing applications, approximate computing has been extensively considered to tradeoff limited accuracy for improvements in other circuit metrics such as area, power, and performance. In this paper, approximate arithmetic circuits are proposed by using emerging nanoscale spintronic devices. Leveraging the intrinsic current-mode thresholding operation of spintronic devices, we initially present a hybrid spin-CMOS majority gate design based on a composite spintronic device structure consisting of a magnetic domain wall motion stripe and a magnetic tunnel junction. We further propose a compact and energy-efficient accuracy-configurable adder design based on the majority gate. Unlike most previous approximate circuit designs that hardwire a constant degree of approximation, this design is adaptive to the inherent resilience in various applications to different degrees of accuracy. Subsequently, we propose two new approximate compressors for utilization in fast multiplier designs. The device-circuit SPICE simulation shows 34.58% and 66% improvement in power consumption, respectively, for the accurate and approximate modes of the accuracy-configurable adder, compared to the recently reported domain wall motion-based full adder design. In addition, the proposed accuracy-configurable adder and approximate compressors can be efficiently utilized in the discrete cosine transform (DCT) as a widely-used digital image processing algorithm. The results indicate that the DCT and inverse DCT (IDCT) using the approximate multiplier achieve ~2x energy saving and 3x speed-up compared to an exactly-designed circuit, while achieving comparable quality in its output result. 
    more » « less