Miniaturization of microelectronic components comes at a price of high heat flux density. By adopting liquid cooling, the rising demand of high heat flux devices can be met while the reliability of the microelectronic devices can also be improved to a greater extent. Liquid cooled cold plates are largely replacing air based heat sinks for electronics in data center applications, thanks to its large heat carrying capacity. A bench level study was carried out to characterize the thermohydraulic performance of two microchannel cold plates which uses warm DI water for cooling Multi Chip Server Modules (MCM). A laboratory built mock package housing mock dies and a heat spreader was employed while assessing the thermal performance of two different cold plate designs at varying coolant flow rate and temperature. The case temperature measured at the heat spreader for varying flow rates and input power were essential in identifying the convective resistance. The flow performance was evaluated by measuring the pressure drop across cold plate module at varying flow rates. Cold plate with the enhanced microchannel design yielded better results compared to a traditional parallel microchannel design. The study conducted at higher coolant temperatures yielded lower pressure drop values with no apparent change in the thermal behavior using different cold plates. The tests conducted after reversing the flow direction in microchannels provide an insight at the effect of neighboring dies on each other and reveal the importance of package specific cold plate designs for top performance. The experimental results were validated using a numerical model which are further optimized for improved geometric designs.
more »
« less
Experimental investigation of direct liquid cooling of a two-die package
Recent commercial efforts have reestablished the benefits of cooling server modules using direct liquid cooling (DLC) technology. The primary drivers behind this technology are the increase in chip densities and the absolute need to reduce the overall data center power usage. In DLC technology, a cold plate is situated on top of the chip with thermal interface material between the chip and the cold plate. The low thermal resistance path facilitates the use of warm water which helps data centers in replacing the chilled water system by a water side economizer utilizing ambient temperature. This work describes the effort to leverage DLC by employing microchannel cold plates to cool multi-chip modules. The primary objective of this work is to build a sophisticated test rig to characterize the flow and thermal performance of a microchannel cold plate for cooling a two-die chip. This study highlights the challenges of building an experimental setup which simulates a two-die chip package and the approaches taken to overcome the challenges. A parallel channel cold plate is used to benchmark the performance. Tests were conducted for a set of independent variables like flow rate, input power to dice, coolant temperature, flow direction and TIM resistance. The results are presented as PQ curves, specific thermal resistance curves and case temperature distribution reflecting the effect of changing the input variables.
more »
« less
- Award ID(s):
- 1738793
- PAR ID:
- 10058146
- Date Published:
- Journal Name:
- Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2018 34th
- Page Range / eLocation ID:
- 42 to 49
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The increasing demand for high-performance computing in applications such as the Internet of Things, Deep Learning, Big data for crypto-mining, virtual reality, healthcare research on genomic sequencing, cancer treatment, etc. have led to the growth of hyperscale data centers. To meet the cooling energy demands of HPC datacenters efficient cooling technologies must be adopted. Traditional air cooling, direct-to-chip liquid cooling, and immersion are some of those methods. Among all, Liquid cooling is superior compared to various air-cooling methods in terms of energy consumption. Direct on-chip cooling using cold plate technology is one such method used in removing heat from high-power electronic components such as CPUs and GPUs in a broader sense. Over the years Thermal Design Power (TDP) is rapidly increasing and will continue to increase in the coming years for not only CPUs and GPUs but also associated electronic components like DRAMs, Platform Control Hub (PCH), and other I/O chipsets on a typical server board. Therefore, unlike air hybrid cooling which uses liquid for cold plates and air as the secondary medium of cooling the associated electronics, we foresee using immersion-based fluids to cool the rest of the electronics in the server. The broader focus of this research is to study the effects of adopting immersion cooling, with integrated cold plates for high-performance systems. Although there are several other factors involved in the study, the focus of this paper will be the optimization of cold plate microchannels for immersion-based fluids in an immersion-cooled environment. Since immersion fluids are dielectric and the fluids used in cold plates are conductive, it exposes us to a major risk of leakage into the tank and short-circuiting the electronics. Therefore, we propose using the immersed fluid to pump into the cold plate. However, it leads to a suspicion of poor thermal performance and associated pumping power due to the difference in viscosity and other fluid properties. To address the thermal and flow performance, the objective is to optimize the cold plate microchannel fin parameters based on thermal and flow performance by evaluating thermal resistance and pressure drop across the cold plate. The detailed CFD model and optimization of the cold plate were done using Ansys Icepak and Ansys OptiSLang respectively.more » « less
-
In recent years, electronic packaging has evolved significantly to meet demands for higher performance, lower costs, and smaller designs. This shift has led to heterogeneous packaging, which integrates chips of varying stack heights and results in non-uniform heat flux and temperature distributions. These conditions pose substantial thermal management challenges, as they can create large temperature gradients, which increase thermal stress and potentially compromise chip reliability. This study explores single-phase liquid cooling for multi-chip modules (MCMs) through a comprehensive experimental and machine learning approach. It investigates the impact of chip spacing, height, fluid flow rate, fluid inlet location, and heat flux uniformity on chip temperature and the thermohydraulic performance of a commercial cold plate. Results show that increasing coolant flow from 1 LPM to 2 LPM decreased thermal resistance by 26 %, with heat losses remaining below 5 %. The left inlet configuration improved temperature uniformity compared to the right, though both yielded comparable thermal performance. Adjusting heater spacing impacted temperature distribution based on inlet position, and lowering one heater by 1 mm raised its temperatures by 15 ◦C due to increased thermal resistance from thermal interface material. A transient test demonstrated the cold plate’s quick response to power surges, in which there is only a 1 ◦C spike above steady state. Complementing these findings, an Artificial Neural Network (ANN) model was developed with optimized architecture specifically for the unique challenges of this study. The ANN model was rigorously validated using an independent dataset, achieving highly accurate temperature predictions (R2 = 0.99) within 2.5 % of experimentalmore » « less
-
This study presents an experimental and numerical characterization of pressure drop in a commercially available direct liquid cooled (DLC) rack. It is important to investigate the pressure drop in the DLC system as it determines the required pumping power for the DLC system, which affects the energy efficiency of the data center. The main objective of this research is to assess the flow rate and pressure distributions in a DLC system to enhance the reliability and the cooling system efficiency. Other objectives of this research are to evaluate the accuracy of flow network modeling (FNM) in predicting the flow distribution in a DLC rack and identify manufacturing limitations in a commercial system that could impact the cooling system reliability. The main components of the investigated DLC system are: coolant distribution module (CDM), supply/return manifold module, and server module which contains a cold plate. Extensive experimental measurements were performed to study the flow distribution and to determine the pressure characteristic curves for the server modules and the coolant distribution module (CDM). Also, a methodology was described to develop an experimentally validated flow network model (FNM) of the DLC system to obtain high accuracy. The measurements revealed a flow maldistribution among the server modules, which is attributed to the manufacturing process of the micro-channel cold plate. The average errors in predicting the flow rate of the server module and the CDM using FNM are 2.5% and 3.8%, respectively. The accuracy and the short run time make FNM a good tool for design, analysis, and optimization for DLC systems. The pressure drop in the server module is found to account for 56% of the total pressure drop in the DLC rack. Further analysis showed that 69% of the pressure drop in the server module is associated with the module's plumbing (corrugated hoses, disconnects, fittings). The server cooling modules are designed to provide secured connections and flexibility, which come with a high pressure drop cost.more » « less
-
More than ever before, data centers must deploy robust thermal solutions to adequately host the high-density and high-performance computing that is in high demand. The newer generation of central processing units (CPUs) and graphics processing units (GPUs) has substantially higher thermal power densities than previous generations. In recent years, more data centers rely on liquid cooling for the high-heat processors inside the servers and air cooling for the remaining low-heat information technology equipment. This hybrid cooling approach creates a smaller and more efficient data center. The deployment of direct-to-chip cold plate liquid cooling is one of the mainstream approaches to providing concentrated cooling to targeted processors. In this study, a processor-level experimental setup was developed to evaluate the cooling performance of a novel computer numerical control (CNC) machined nickel-plated impinging cold plate on a 1 in. 1 in. mock heater that represents a functional processing unit. The pressure drop and thermal resistance performance curves of the electroless nickel-plated cold plate are compared to those of a pure copper cold plate. A temperature uniformity analysis is done using compuational fluid dynamics and compared to the actual test data. Finally, the CNC machined pure copper one is compared to other reported cold plates to demonstrate its superiority of the design with respect to the cooling performance.more » « less
An official website of the United States government

