skip to main content


Title: The Importance of Belonging and Self-Efficacy in Engineering Identity
Retention of students in Science, Technology, Engineering, and Mathematics (STEM) disciplines is a significant concern in higher education. Identity has been identified as an important correlate of academic success that may be important in a robust model of STEM retention. The engineering identity of “early career” university engineering students and its relation to GPA, self-efficacy, and a sense of belonging was examined. Self-efficacy and belonging were demonstrated to be domain dependent. A sense of belonging was much more strongly related to identity than either GPA or self-efficacy. A strong sense of belonging, specifically in the domain of the department of their major, was critical to a strong engineering identity.  more » « less
Award ID(s):
1561517
NSF-PAR ID:
10058182
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AERA open
ISSN:
2332-8584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this Great Ideas for Teaching Students (GIFTS) paper, we offer learning outcomes that we are beginning to recognize from our eight-week research experience for undergraduates (REU). There are four characteristics that have been found to be essential to success in Science, Technology, Engineering, and Mathematics (STEM) fields: a strong sense of STEM identity, scientific self-efficacy, a sense of belonging, and a psychological sense of community. This is especially true for first-year and transfer students pursuing STEM undergraduate degrees. A variety of studies have been published that go into detail about why these characteristics in particular have such a significant effect on student performance and retention. This paper will present Critical Self-Reflection as a practical way to integrate development of these characteristics into student research experiences to foster experiential learning that goes beyond increasing technical skills. STEM students are not often trained to critically self-reflect on their experiences in classroom and research settings. An inability for undergraduates to reflect intentionally on their experiences creates greater risk for attrition from STEM disciplines. Curated reflective experiences in collaborative learning settings can offer professional development opportunities to enhance students’ social and technical communication skills. There are four phases within the scaffolded Critical Self-Reflection framework: Learning to Reflect, Reflection for Action, Reflection in Action, and Reflection on Action. When applying the evidence-based practice, STEM undergraduate researchers describe their perceptions via three activities: creating a legacy statement, participating in facilitated dialogue sessions, and writing curated reflection journal entries within an REU. Through critical self-reflection exercises, we are beginning to find growth of first-year and transfer STEM undergraduates in the following areas: understanding of their role in the lab; confidence in their researcher identity; expression of agency; observation and communication skills; and intentionality for action. Participating in this self-reflection allows students to make meaning of their experience enabling them to hone the aforementioned characteristics that creates a pathway from their undergraduate experience to undergraduate degree completion, graduate degree attainment, and to the STEM workforce. 
    more » « less
  2. null (Ed.)
    Abstract Since 2009, the mechanical engineering (ME) scholarship-science technology engineering and mathematics (S-STEM) Program at the University of Maryland Baltimore County (UMBC) has provided financial support and program activities to ME undergraduate students aiming at improving their retention and graduation rates. The objective of this study is to identify program activities that were most effective to help students for improvements. Current ME S-STEM scholars were asked to complete a survey that measures their scientific efficacy, engineering identity, expectations, integration, and sense of belonging, as well as how program activities impact their attitudes and perceptions. Analyses of 36 collected surveys showed that scholars reported high levels of engineering identity, expectations, and sense of belonging. However, further improvements were needed to help students in achieving scientific efficacy and academic integration into the program. Results demonstrated that pro-active mentoring was the most effective method contributing to positive attitudes and perceptions. The implemented S-STEM research-related activities and internship were viewed favorably by the scholars in helping them establish their scientific efficacy and engineering identity, and understand their expectations and goals. Community building activities were considered helpful for them to integrate into campus life and improve their sense of belonging to the campus and program. Scholars identified mentoring, research related activities, internships, and social interaction with faculty and their peers as important factors for their retention and graduation. Although the sample size was small in the study, we believe that the cost-effective activities identified could be adopted by other institutions to further improve students' retention and graduation rates in engineering programs. 
    more » « less
  3. SPARK is the first project at Texas State University designed to recruit and retain low income, female, first year students who show an early interest in majoring in engineering and computer science (ECS). Female students who show an initial extrinsic interest in these majors can be driven away far too easily by their experiences. SPARK has two primary goals: (1) create an environment where belonging to a like-minded cohort nurtures a strong sense of self, and (2) deliver high quality, high impact practices that engender female students’ success and retention in ECS. Guided by Albert Bandura and Frank Pajares’ research on self-efficacy in theory and practice, the SPARK project sheds light on self-efficacy and confidence as predictive of persistence for female students in ECS. Additionally, the effect of SPARK students’ spatial visualization skills was assessed and tracked throughout the life of the project, utilizing Sheryl Sorby’s research correlating spatial visualization skills to STEM success. Current research-based approaches to student engagement provide good evidence that mattering and sense of belonging are also highly correlative with persistence, particularly for first year students. This is important because the national conversation on what works to mend the gender gap in STEM is currently wedged between Sheryl Sandberg’s “leaning in” and Angela Duckworth’s views on “grit” as an indicator of persistence. In this paper, we will discuss the context and history of the SPARK program, present assessment outcomes about impact to date, share lessons learned, and consider future directions. This work will contribute to the growing body of research on retaining females in ECS by developing and analyzing student motivation; recognizing factors that may contribute to aspirational deficient, attrition, and marginalization; and designing and assessing activities that strengthen self-confidence, self-efficacy, and persistence in retention programs for females in ECS. 
    more » « less
  4. This analysis reveals the informal instrumental and socio-emotional support that non-traditional (e.g. Latinx, Black, Indigenous, lower-income, and first-generation) college students receive from family members to combat experiences of marginalization and contribute towards their self-efficacy. Family support can be particularly important for underrepresented undergraduate Science, Technology, Engineering, and Math (STEM) students who have been shown to have higher risks of dropping out of their program and experience lower levels of success indicators (e.g. sense of belonging, self-concept, and STEM identity) compared to their white and Asian peers. Therefore, it is important to further investigate the nuances of family support contributing to non-traditional student retention and success. Utilizing a phenomenological approach, we used open-ended questions during focus groups with community college transfer students to gain their experiences with challenges and feelings of belonging in college and STEM. This article investigates the value family support holds for students in surviving STEM challenges by extending family to include romantic partners and extended family as well as applying the funds of knowledge framework to community college transfer students. 
    more » « less
  5. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less