Configuration space complexity makes the big-data software systems hard to configure well. Consider Hadoop, with over nine hundred parameters, developers often just use the default configurations provided with Hadoop distributions. The opportunity costs in lost performance are significant. Popular learning-based approaches to auto-tune software does not scale well for big-data systems because of the high cost of collecting training data. We present a new method based on a combination of Evolutionary Markov Chain Monte Carlo (EMCMC)} sampling and cost reduction techniques tofind better-performing configurations for big data systems. For cost reduction, we developed and experimentally tested and validated two approaches: using scaled-up big data jobs as proxies for the objective function for larger jobs and using a dynamic job similarity measure to infer that results obtained for one kind of big data problem will work well for similar problems. Our experimental results suggest that our approach promises to improve the performance of big data systems significantly and that it outperforms competing approaches based on random sampling, basic genetic algorithms (GA), and predictive model learning. Our experimental results support the conclusion that our approach strongly demonstrates the potential toimprove the performance of big data systems significantly and frugally.
more »
« less
Ignem: Upward Migration of Cold Data in Big Data File Systems
This paper investigates whether migrating cold data can yield significant speedup for big data jobs that run on modern big data file systems. Our work is motivated by two observations. First, improving the input stage of a job can provide significant speedup because many jobs spend a large part of their execution reading inputs. The second observation is that the inputs for many jobs are cold. Common techniques that aim to keep hot data in memory do not benefit these jobs. We analyze the Google production cluster trace data and find that the key ingredients for effectively migrating cold data do exist in such production environments. Encouraged by our findings, we design and implement Ignem, a framework for migrating cold data in big data file systems. We evaluate Ignem in a series of experiments and show that it provides significant speedup for both small and large jobs. Specifically, Hive queries are accelerated by up to 34%; the mean job duration in a tracedriven workload is reduced by 12% and the task duration by nearly 40%; other standalone jobs such as sort and wordcount also improve similarly by up to 30%.
more »
« less
- Award ID(s):
- 1718980
- PAR ID:
- 10058538
- Date Published:
- Journal Name:
- 8th IEEE International Conference on Distributed Computing Systems (ICDCS 2018)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Twister2 is an open‐source big data hosting environment designed to process both batch and streaming data at scale. Twister2 runs jobs in both high‐performance computing (HPC) and big data clusters. It provides a cross‐platform resource scheduler to run jobs in diverse environments. Twister2 is designed with a layered architecture to support various clusters and big data problems. In this paper, we present the cross‐platform resource scheduler of Twister2. We identify required services and explain implementation details. We present job startup delays for single jobs and multiple concurrent jobs in Kubernetes and OpenMPI clusters. We compare job startup delays for Twister2 and Spark at a Kubernetes cluster. In addition, we compare the performance of terasort algorithm on Kubernetes and bare metal clusters at AWS cloud.more » « less
-
The performance of modern Big Data frameworks, e.g. Spark, depends greatly on high-speed storage and shuffling, which impose a significant memory burden on production data centers. In many production situations, the persistence and shuffling intensive applications can suffer a major performance loss due to lack of memory. Thus, the common practice is usually to over-allocate the memory assigned to the data workers for production applications, which in turn reduces overall resource utilization. One efficient way to address the dilemma between the performance and cost efficiency of Big Data applications is through data center computing resource disaggregation. This paper proposes and implements a system that incorporates the Spark Big Data framework with a novel in-memory distributed file system to achieve memory disaggregation for data persistence and shuffling. We address the challenge of optimizing performance at affordable cost by co-designing the proposed in-memory distributed file system with large-volume DIMM-based persistent memory (PMEM) and RDMA technology. The disaggregation design allows each part of the system to be scaled independently, which is particularly suitable for cloud deployments. The proposed system is evaluated in a production-level cluster using real enterprise-level Spark production applications. The results of an empirical evaluation show that the system can achieve up to a 3.5- fold performance improvement for shuffle-intensive applications with the same amount of memory, compared to the default Spark setup. Moreover, by leveraging PMEM, we demonstrate that our system can effectively increase the memory capacity of the computing cluster with affordable cost, with a reasonable execution time overhead with respect to using local DRAM only.more » « less
-
Scientific workflows drive most modern large-scale science breakthroughs by allowing scientists to define their computations as a set of jobs executed in a given order based on their data dependencies. Workflow management systems (WMSs) have become key to automating scientific workflows-executing computational jobs and orchestrating data transfers between those jobs running on complex high-performance computing (HPC) platforms. Traditionally, WMSs use files to communicate between jobs: a job writes out files that are read by other jobs. However, HPC machines face a growing gap between their storage and compute capabilities. To address that concern, the scientific community has adopted a new approach called in situ, which bypasses costly parallel filesystem I/O operations with faster in-memory or in-network communications. When using in situ approaches, communication and computations can be interleaved. In this work, we leverage the Decaf in situ dataflow framework to accelerate task-based scientific workflows managed by the Pegasus WMS, by replacing file communications with faster MPI messaging. We propose a new execution engine that uses Decaf to manage communications within a sub-workflow (i.e., set of jobs) to optimize inter-job communications. We consider two workflows in this study: (i) a synthetic workflow that benchmarks and compares file- and MPI-based communication; and (ii) a realistic bioinformatics workflow that computes mu-tational overlaps in the human genome. Experiments show that in situ communication can improve the bioinformatics workflow execution time by 22% to 30% compared with file communication. Our results motivate further opportunities and challenges for bridging traditional WMSs with in situ frameworks.more » « less
-
Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A. (Ed.)CMS is tackling the exploitation of CPU resources at HPC centers where compute nodes do not have network connectivity to the Internet. Pilot agents and payload jobs need to interact with external services from the compute nodes: access to the application software (CernVM-FS) and conditions data (Frontier), management of input and output data files (data management services), and job management (HTCondor). Finding an alternative route to these services is challenging. Seamless integration in the CMS production system without causing any operational overhead is a key goal. The case of the Barcelona Supercomputing Center (BSC), in Spain, is particularly challenging, due to its especially restrictive network setup. We describe in this paper the solutions developed within CMS to overcome these restrictions, and integrate this resource in production. Singularity containers with application software releases are built and pre-placed in the HPC facility shared file system, together with conditions data files. HTCondor has been extended to relay communications between running pilot jobs and HTCondor daemons through the HPC shared file system. This operation mode also allows piping input and output data files through the HPC file system. Results, issues encountered during the integration process, and remaining concerns are discussed.more » « less
An official website of the United States government

