The opportunities to use dielectric Photonic Crystals (PhCs) as the media of cylindrical invisibility cloaks, designed using Transformation Optics (TO) concepts, are investigated. It is shown that TO-based prescriptions for radial index dispersion, responsible for turning waves around hidden objects, can be dropped, if PhC media support self-collimation of waves in bent crystals. Otherwise, to provide prescribed anisotropy of index dispersion, it is possible to employ PhCs with rectangular lattices. It is found, however, that at acceptable cloak thicknesses, modifications of crystal parameters do not allow for achieving prescribed level of index anisotropy. This problem is solved by finding reduced spatial dispersion law for radial index component, which is characterized by decreased against TO-prescriptions values near the target and increased values in outer layers of the cloak. The cloak utilizing reduced prescriptions for indices is shown to perform almost as efficient, as TO-based cloak, in terms of both wave front restoration behind the target and reducing total scattering cross-width of the target.
more »
« less
A Road to Optical Cloaking Using Transformation Media Built from Photonic Crystals
The possibility of replacing metamaterials in transformation media by lossless dielectric photonic crystals is investigated. It is shown that such crystals are capable of both accelerating waves to superluminal phase velocities and bending wave paths around the objects thus providing initial wave front reconstruction beyond the objects. To realize transformation optics prescriptions for the cloak medium, we propose to use crystals with rectangular unit cells. We show that these crystals can provide prescribed anisotropy of directional indices along crystallographic directions.
more »
« less
- Award ID(s):
- 1709991
- PAR ID:
- 10059904
- Date Published:
- Journal Name:
- 1st International Conference on Optics, Photonics, and Lasers, (OPAL 2019), Barcelona, Spain
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Morphological and magnetic anisotropy can be combined in colloidal assembly to create unconventional secondary structures. We show here that magnetite nanorods interact along a critical angle, depending on their aspect ratios and assemble into body-centered tetragonal colloidal crystals. Under a magnetic field, size-dependent attractive and repulsive domains develop on the ends and center of the nanorods, respectively. Our joint experiment-computational multiscale study demonstrates the presence of a critical angle in the attractive domain, which defines the equilibrium bonding states of interacting rods and leads to the formation of non–close-packed yet hard-contact tetragonal crystals. Small-angle x-ray scattering measurement attributes the perfect tetragonal phase to the slow assembly kinetics. The crystals exhibit brilliant structural colors, which can be actively tuned by changing the magnetic field direction. These highly ordered frameworks and well-defined three-dimensional nanochannels may offer new opportunities for manipulating nanoscale chemical transformation, mass transportation, and wave propagation.more » « less
-
Abstract Mechanisms of hexagonal close-packed (HCP) to body-centered cubic (BCC) phase transformation in Mg single crystals are observed using a combination of polychromatic beam Laue diffraction and monochromatic beam powder diffraction techniques under quasi-hydrostatic pressures of up to 58 ± 2 GPa at ambient temperature. Although experiments were performed with both He and Ne pressure media, crystals inevitably undergo plastic deformation upon loading to 40–44 GPa. The plasticity is accommodated by dislocation glide causing local misorientations of up to 1°–2°. The selected crystals are tracked by mapping Laue diffraction spots up to the onset of the HCP to BCC transformation, which is determined to be at a pressure of 56.6 ± 2 GPa. Intensity of the Laue reflections from HCP crystals rapidly decrease but no reflections from crystalline BCC phase are observed with a further increase of pressure. Nevertheless, the powder diffraction shows the formation of 110 BCC peak at 56.6 GPa. The peak intensity increases at 59.7 GPa. Upon the full transformation, a powder-like BCC aggregate is formed revealing the destructive nature of the HCP to BCC transformation in single crystals of Mg.more » « less
-
Abstract In the presented work, wave dynamics of 2D finite granular crystals of polyurethane cylinders under low-velocity impact loading was investigated to gain better understanding of the influence of lateral constraints. The deformation of the individual grains in the granular crystals during the impact loading was recorded by a high-speed camera and digital image correlation (DIC) was used to calculate high fidelity kinematic and strain fields in each grain. These grain-scale kinematic and strain fields were utilized for the computation of the intergranular forces at each contact using a granular element method (GEM) based mathematical framework. Since the polyurethane were viscoelastic in nature, the viscoelasticity constitutive law was implemented in the GEM framework and it was shown that linear elasticity using the strain rate-dependent coefficient of elasticity is sufficient to use instead of a viscoelastic framework. These particle-scale kinematic and strain field measurements in conjunction with the interparticle forces also provided some interesting insight into the directional dependence of the wave scattering and attenuation in finite granular crystals. The directional nature of the wave propagation resulted in strong wave reflection from the walls. It was also noteworthy that the two reflected waves from the two opposite sidewalls result in destructive interference. These lateral constraints at different depths leads to significant differences in wave attenuation characteristics and the finite granular crystals can be divided into two regions: upper region, with exponential wave decay rate, and lower region, with higher decay rate.more » « less
-
Federico Montoncello (Ed.)Magnonic crystals are metamaterials whose magnon behavior can be controlled for specific applications. To date, most magnonic crystals have relied on nanopatterning and magnetostatic waves. Here, we analytically and numerically investigate magnonic crystals defined by modulating magnetic parameters at the nanoscale, which predominantly act on exchange-dominated, sub-100 nm magnons. We focus on two cases: the variation in the exchange constant, and the DMI constant. We found that the exchange constant modulation gives rise to modest band gaps in the forward volume wave and surface wave configurations. The modulation of the DMI constant was found to have little effect on the magnonic band structure, leading instead to a behavior expected for unpatterned thin films. We believe that our results will be interesting for future experimental investigations of nano-designed magnonic crystals and magnonic devices, where material parameters can be locally controlled, e.g., by thermal nano-lithography.more » « less
An official website of the United States government

