skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Lateral Constraints on Wave Propagation in Finite Granular Crystals
Abstract In the presented work, wave dynamics of 2D finite granular crystals of polyurethane cylinders under low-velocity impact loading was investigated to gain better understanding of the influence of lateral constraints. The deformation of the individual grains in the granular crystals during the impact loading was recorded by a high-speed camera and digital image correlation (DIC) was used to calculate high fidelity kinematic and strain fields in each grain. These grain-scale kinematic and strain fields were utilized for the computation of the intergranular forces at each contact using a granular element method (GEM) based mathematical framework. Since the polyurethane were viscoelastic in nature, the viscoelasticity constitutive law was implemented in the GEM framework and it was shown that linear elasticity using the strain rate-dependent coefficient of elasticity is sufficient to use instead of a viscoelastic framework. These particle-scale kinematic and strain field measurements in conjunction with the interparticle forces also provided some interesting insight into the directional dependence of the wave scattering and attenuation in finite granular crystals. The directional nature of the wave propagation resulted in strong wave reflection from the walls. It was also noteworthy that the two reflected waves from the two opposite sidewalls result in destructive interference. These lateral constraints at different depths leads to significant differences in wave attenuation characteristics and the finite granular crystals can be divided into two regions: upper region, with exponential wave decay rate, and lower region, with higher decay rate.  more » « less
Award ID(s):
1845200
PAR ID:
10157648
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
87
Issue:
7
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper is devoted to the development of a continuum theory for materials having granular microstructure and accounting for some dissipative phenomena like damage and plasticity. The continuum description is constructed by means of purely mechanical concepts, assuming expressions of elastic and dissipation energies as well as postulating a hemi-variational principle, without incorporating any additional postulate like flow rules. Granular micromechanics is connected kinematically to the continuum scale through Piola's ansatz. Mechanically meaningful objective kinematic descriptors aimed at accounting for grain-grain relative displacements in finite deformations are proposed. Karush-Kuhn-Tucker (KKT) type conditions, providing evolution equations for damage and plastic variables associated to grain-grain interactions, are derived solely from the fundamental postulates. Numerical experiments have been performed to investigate the applicability of the model. Cyclic loading-unloading histories have been considered to elucidate the material-hysteretic features of the continuum, which emerge from simple grain-grain interactions. We also assess the competition between damage and plasticity, each having an effect on the other. Further, the evolution of the load-free shape is shown not only to assess the plastic behavior, but also to make tangible the point that, in the proposed approach, plastic strain is found to be intrinsically compatible with the existence of a placement function. 
    more » « less
  2. Plastic-bonded granular materials (PBM) are widely used in industrial sectors, including building construction, abrasive applications, and defense applications such as plastic-bonded explosives. The mechanical behavior of PBM is highly nonlinear, irreversible, rate dependent, and temperature sensitive governed by various micromechanical attributions such as grain crushing and binder damage. This paper presents a thermodynamically consistent, microstructure-informed constitutive model to capture these characteristic behaviors of PBM. Key features of the model include a breakage internal variable to upscale the grain-scale information to the continuum level and to predict grain size evolution under mechanical loading. In addition, a damage internal state variable is introduced to account for the damage, deterioration, and debonding of the binder matrix upon loading. Temperature is taken as a fundamental external state variable to handle non-isothermal loading paths. The proposed model is able to capture with good accuracy several important aspects of the mechanical properties of PBM, such as pressure-dependent elasticity, pressure-dependent yield strength, brittle-to-ductile transition, temperature dependency, and rate dependency in the post-yielding regime. The model is validated against multiple published datasets obtained from confined and unconfined compression tests, covering various PBM compositions, confining pressures, temperatures, and strain rates. 
    more » « less
  3. The work reported in ``Granular micromechanics-based identification of isotropic strain gradient parameters for elastic geometrically nonlinear deformations" misidentified key terms in the grain-pair objective relative displacement when accounting for the second gradient of placement. In this paper, we correct that oversight by deriving a revised expression for the grain-pair objective relative displacement within the granular micromechanics framework. The amended terms, which resemble Christoffel symbols expressed in terms of strain gradients, modify the contributions of both the normal and tangential components to the strain energy and, consequently, alter the identified strain gradient elastic parameters. Importantly, the identification of the standard (first gradient) elastic tensor remains unchanged. This brief paper presents the corrected derivation, the resulting stiffness tensors for anisotropic strain gradient elasticity, and updated analytical expressions for the material parameters in both 2D and 3D isotropic settings. 
    more » « less
  4. For many problems in science and engineering, it is necessary to describe the collective behavior of a very large number of grains. Complexity inherent in granular materials, whether due the variability of grain interactions or grain-scale morphological factors, requires modeling approaches that are both representative and tractable. In these cases, continuum modeling remains the most feasible approach; however, for such models to be representative, they must properly account for the granular nature of the material. The granular micromechanics approach has been shown to offer a way forward for linking the grain-scale behavior to the collective behavior of millions and billions of grains while keeping within the continuum framework. In this paper, an extended granular micromechanics approach is developed that leads to a micromorphic theory of degree n. This extended form aims at capturing the detailed grain-scale kinematics in disordered (mechanically or morphologically) granular media. To this end, additional continuum kinematic measures are introduced and related to the grain-pair relative motions. The need for enriched descriptions is justified through experimental measurements as well as results from simulations using discrete models. Stresses conjugate to the kinematic measures are then defined and related, through equivalence of deformation energy density, to forces conjugate to the measures of grain-pair relative motions. The kinetic energy density description for a continuum material point is also correspondingly enriched, and a variational approach is used to derive the governing equations of motion. By specifying a particular choice for degree n, abridged models of degrees 2 and 1 are derived, which are shown to further simplify to micro-polar or Cosserat-type and second-gradient models of granular materials. 
    more » « less
  5. Abstract In this paper, the nonlinear response of indenter–foam dampers is characterized. Those dampers consist of indenters pressed on open-cell foams swollen with wetting liquids. Recently, the authors identified the dominant mechanism of damping in those dampers as poro-viscoelastic (PVE) relaxations as in articular cartilage, one of nature’s best solutions to vibration attenuation. Those previous works by the authors included dynamic mechanical analyses of the indenter–foam dampers under small vibrations, i.e., linear regime. The current study features the dynamic response of similar dampers under larger strains to investigate the nonlinear regime. In particular, the indenter–foam dampers tested in this paper consist of an open-cell polyurethane foam swollen with castor oil. Harmonic displacements are applied on the swollen and pre-compressed foam using a flat-ended cylindrical indenter. Measured forces and corresponding hysteresis (force–displacement) loops are then analyzed to quantify damping performance (via specific damping capacity) and nonlinearities (via harmonic ratio). The effects of strain and strain rates on the damping capacity and harmonic ratio are investigated experimentally. The dominant source of the nonlinearity is identified as peeling at the indenter–foam interface (and quantified via peeling index). A representative model consisting of a linear viscoelastic foam and rate-dependent adhesive interface (slider element with limiting adhesive strength) explains the observed trends in peeling and thus nonlinear dynamic response. Possible remedies to suppress those nonlinearities in future designs of indenter–foam dampers are also discussed. 
    more » « less