skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimax Rates and Efficient Algorithms for Noisy Sorting
There has been a recent surge of interest in studying permutation-based models for ranking from pairwise comparison data. Despite being structurally richer and more robust than parametric ranking models, permutation-based models are less well understood statistically and generally lack efficient learning algorithms. In this work, we study a prototype of permutation-based ranking models, namely, the noisy sorting model. We establish the optimal rates of learning the model under two sampling procedures. Furthermore, we provide a fast algorithm to achieve near-optimal rates if the observations are sampled independently. Along the way, we discover properties of the symmetric group which are of theoretical interest.  more » « less
Award ID(s):
1712596 1740751
PAR ID:
10059912
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
83
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a listwise approach for constructing user-specific rankings in recommendation systems in a collaborative fashion. We contrast the listwise approach to previous pointwise and pairwise approaches, which are based on treating either each rating or each pairwise comparison as an independent instance respectively. By extending the work of (Cao et al. 2007), we cast listwise collaborative ranking as maximum likelihood under a permutation model which applies probability mass to permutations based on a low rank latent score matrix. We present a novel algorithm called SQL-Rank, which can accommodate ties and missing data and can run in linear time. We develop a theoretical framework for analyzing listwise ranking methods based on a novel representation theory for the permutation model. Applying this framework to collaborative ranking, we derive asymptotic statistical rates as the number of users and items grow together. We conclude by demonstrating that our SQL-Rank method often outperforms current state-of-the-art algorithms for implicit feedback such as Weighted-MF and BPR and achieve favorable results when compared to explicit feedback algorithms such as matrix factorization and collaborative ranking. 
    more » « less
  2. Abstract Ranking models are the main components of information retrieval systems. Several approaches to ranking are based on traditional machine learning algorithms using a set of hand-crafted features. Recently, researchers have leveraged deep learning models in information retrieval. These models are trained end-to-end to extract features from the raw data for ranking tasks, so that they overcome the limitations of hand-crafted features. A variety of deep learning models have been proposed, and each model presents a set of neural network components to extract features that are used for ranking. In this paper, we compare the proposed models in the literature along different dimensions in order to understand the major contributions and limitations of each model. In our discussion of the literature, we analyze the promising neural components, and propose future research directions. We also show the analogy between document retrieval and other retrieval tasks where the items to be ranked are structured documents, answers, images and videos. 
    more » « less
  3. Windecker, Saras (Ed.)
    1. The ecological and environmental science communities have embraced machine learning (ML) for empirical modelling and prediction. However, going beyond prediction to draw insights into underlying functional relationships between response variables and environmental ‘drivers’ is less straightforward. Deriving ecological insights from fitted ML models requires techniques to extract the ‘learning’ hidden in the ML models. 2. We revisit the theoretical background and effectiveness of four approaches for deriving insights from ML: ranking independent variable importance (Gini importance, GI; permutation importance, PI; split importance, SI; and conditional permutation importance, CPI), and two approaches for inference of bivariate functional relationships (partial dependence plots, PDP; and accumulated local effect plots, ALE). We also explore the use of a surrogate model for visualization and interpretation of complex multi-variate relationships between response variables and environmental drivers. We examine the challenges and opportunities for extracting ecological insights with these interpretation approaches. Specifically, we aim to improve interpretation of ML models by investigating how effectiveness relates to (a) interpretation algorithm, (b) sample size and (c) the presence of spurious explanatory variables. 3. We base the analysis on simulations with known underlying functional relationships between response and predictor variables, with added white noise and the presence of correlated but non-influential variables. The results indicate that deriving ecological insight is strongly affected by interpretation algorithm and spurious variables, and moderately impacted by sample size. Removing spurious variables improves interpretation of ML models. Meanwhile, increasing sample size has limited value in the presence of spurious variables, but increasing sample size does improves performance once spurious variables are omitted. Among the four ranking methods, SI is slightly more effective than the other methods in the presence of spurious variables, while GI and SI yield higher accuracy when spurious variables are removed. PDP is more effective in retrieving underlying functional relationships than ALE, but its reliability declines sharply in the presence of spurious variables. Visualization and interpretation of the interactive effects of predictors and the response variable can be enhanced using surrogate models, including three-dimensional visualizations and use of loess planes to represent independent variable effects and interactions. 4. Machine learning analysts should be aware that including correlated independent variables in ML models with no clear causal relationship to response variables can interfere with ecological inference. When ecological inference is important, ML models should be constructed with independent variables that have clear causal effects on response variables. While interpreting ML models for ecological inference remains challenging, we show that careful choice of interpretation methods, exclusion of spurious variables and adequate sample size can provide more and better opportunities to ‘learn from machine learning’. 
    more » « less
  4. We discuss the question of learning distribution over permutations of a given set of choices, options or items based on partial observations. This is central to capturing the so called ``choice'' in a variety of contexts: understanding preferences of consumers over a collection of products based on purchasing and browsing data in the setting of retail and e-commerce, learning public opinion amongst a collection of socio-economic issues based on sparse polling data, deciding a ranking of teams or players based on outcomes of games, electing leaders based on votes, and more generally collaborative decision making based on collective judgement such as accepting paper(s) in a competitive academic conference. The question of learning distribution over permutations arises beyond capturing ``choice'' as well. For example, tracking a collection of objects using noisy cameras, or aggregating ranking of web-pages using outcomes of multiple search engines. It is only natural that such a topic has been extensively studied in Economics, Political Science and Psychology for more than a century, and more so recently in Computer Science, Electrical Engineering, Statistics and Operations Research. Here we shall focus on the task of learning distribution over permutations from its marginal distributions of two types: first-order marginals and pair-wise comparisons. There has been a lot of progress made on this topic in the last decade. The ideal goal is to provide a comprehensive overview of the state-of-art on this topic. We shall provide detailed overview of selective aspects, biased by author's perspective of the topic. And provide sufficient pointers to aspects not covered here. We shall emphasize on ability to identify the entire distribution over permutation as well as ``best ranking''. 
    more » « less
  5. The availability of massive data and computing allowing for effective data driven neural approaches is having a major impact on AI and IR research, but these models have a basic problem with efficiency. Current neural ranking models are implemented as multistage rankers: for efficiency reasons, the neural model only re-ranks the top ranked documents retrieved by a first-stage efficient ranker in response to a given query. Neural ranking models learn dense representations causing essentially every query term to match every document term, making it highly inefficient or intractable to rank the whole collection. The reliance on a first stage ranker creates a dual problem: First, the interaction and combination effects are not well understood. Second, the first stage ranker serves as a "gate-keeper" or filter effectively blocking the potential of neural models to uncover new relevant documents. In this work, we propose a standalone neural ranking model SNRM by introducing a sparsity property to learn a latent sparse representation for each query and document. This representation captures the semantic relationship between the query and documents, but is also {sparse} enough to enable constructing an inverted index for the whole collection. We parameterize the sparsity of the model to yield a retrieval model as efficient as conventional term based models. Our model gains in efficiency without loss of effectiveness: it not only outperforms the existing term matching baselines, but also performs similar to the recent re-ranking based neural models with dense representations. More generally, our results demonstrate the importance of sparsity in neural model learning and show that dense representations can be pruned effectively, giving new insights about essential semantic features and their distributions. 
    more » « less