Task-invariant feedback control laws for powered exoskeletons are preferred to assist human users across varying locomotor activities. This goal can be achieved with energy shaping methods, where certain nonlinear partial differential equations, i.e., matching conditions, must be satisfied to find the achievable dynamics. Based on the energy shaping methods, open-loop systems can be mapped to closed-loop systems with a desired analytical expression of energy. In this paper, the desired energy consists of modified potential energy that is well-defined and unified across different contact conditions along with the energy of virtual springs and dampers that improve energy recycling during walking. The human-exoskeleton system achieves the input-output passivity and Lyapunov stability during the whole walking period with the proposed method. The corresponding controller provides assistive torques that closely match the human torques of a simulated biped model and able-bodied human subjects’ data. 
                        more » 
                        « less   
                    
                            
                            Passivity-Based Control with a Generalized Energy Storage Function for Robust Walking of Biped Robots
                        
                    
    
            This paper offers a novel generalization of a passivity-based, energy tracking controller for robust bipedal walking. Past work has shown that a biped limit cycle with a known, constant mechanical energy can be made robust to uneven terrains and disturbances by actively driving energy to that reference. However, the assumption of a known, constant mechanical energy has limited application of this passivity-based method to simple toy models (often passive walkers). The method presented in this paper allows the passivity-based controller to be used in combination with an arbitrary inner-loop control that creates a limit cycle with a constant generalized system energy. We also show that the proposed control method accommodates arbitrary degrees of underactuation. Simulations on a 7-link biped model demonstrate that the proposed control scheme enlarges the basin of attraction, increases the convergence rate to the limit cycle, and improves robustness to ground slopes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1652514
- PAR ID:
- 10060263
- Date Published:
- Journal Name:
- Proceedings of the ... American Control Conference
- Page Range / eLocation ID:
- 2958 to 2963
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Whole-body control (WBC) is a generic task-oriented control method for feedback control of loco-manipulation behaviors in humanoid robots. The combination of WBC and model-based walking controllers has been widely utilized in various humanoid robots. However, to date, the WBC method has not been employed for unsupported passive-ankle dynamic locomotion. As such, in this article, we devise a new WBC, dubbed the whole-body locomotion controller (WBLC), that can achieve experimental dynamic walking on unsupported passive-ankle biped robots. A key aspect of WBLC is the relaxation of contact constraints such that the control commands produce reduced jerk when switching foot contacts. To achieve robust dynamic locomotion, we conduct an in-depth analysis of uncertainty for our dynamic walking algorithm called the time-to-velocity-reversal (TVR) planner. The uncertainty study is fundamental as it allows us to improve the control algorithms and mechanical structure of our robot to fulfill the tolerated uncertainty. In addition, we conduct extensive experimentation for: (1) unsupported dynamic balancing (i.e., in-place stepping) with a six-degree-of-freedom biped, Mercury; (2) unsupported directional walking with Mercury; (3) walking over an irregular and slippery terrain with Mercury; and 4) in-place walking with our newly designed ten-DoF viscoelastic liquid-cooled biped, DRACO. Overall, the main contributions of this work are on: (a) achieving various modalities of unsupported dynamic locomotion of passive-ankle bipeds using a WBLC controller and a TVR planner; (b) conducting an uncertainty analysis to improve the mechanical structure and the controllers of Mercury; and (c) devising a whole-body control strategy that reduces movement jerk during walking.more » « less
- 
            A new control paradigm using angular momentum and foot placement as state variables in the linear inverted pendulum model has expanded the realm of possibilities for the control of bipedal robots. This new paradigm, known as the ALIP model, has shown effectiveness in cases where a robot's center of mass height can be assumed to be constant or near constant as well as in cases where there are no non-kinematic restrictions on foot placement. Walking up and down stairs violates both of these assumptions, where center of mass height varies significantly within a step and the geometry of the stairs restrict the effectiveness of foot placement. In this paper, we explore a variation of the ALIP model that allows the length of the virtual pendulum formed by the robot's stance foot and center of mass to follow smooth trajectories during a step. We couple this model with a control strategy constructed from a novel combination of virtual constraint-based control and a model predictive control algorithm to stabilize a stair climbing gait that does not soley rely on foot placement. Simulations on a 20-degree of freedom model of the Cassie biped in the SimMechanics simulation environment show that the controller is able to achieve periodic gait.more » « less
- 
            Abstract Bipedal locomotion over compliant terrain is an important and largely underexplored problem in the robotics community. Although robot walking has been achieved on some non-rigid surfaces with existing control methodologies, there is a need for a systematic framework applicable to different bipeds that enables stable locomotion over various compliant terrains. In this work, a novel energy-based framework is proposed that allows the dynamic locomotion of bipeds across a wide range of compliant surfaces. The proposed framework utilizes an extended version of the 3D dual spring-loaded inverted pendulum (Dual-SLIP) model that supports compliant terrains, while a bio-inspired controller is employed to regulate expected perturbations of extremely low ground-stiffness levels. An energy-based methodology is introduced for tuning the bio-inspired controller to enable dynamic walking with robustness to a wide range of low ground-stiffness one-step perturbations. The proposed system and controller are shown to mimic the vertical ground reaction force (GRF) responses observed in human walking over compliant terrains. Moreover, they succeed in handling repeated unilateral stiffness perturbations under specific conditions. This work can advance the field of biped locomotion by providing a biomimetic method for generating stable human-like walking trajectories for bipedal robots over various compliant surfaces. Furthermore, the concepts of the proposed framework could be incorporated into the design of controllers for lower-limb prostheses with adjustable stiffness to improve their robustness over compliant surfaces.more » « less
- 
            Functional electrical stimulation (FES) can be combined with a motorized cycle to offer various rehabilitation options for individuals with neurological conditions. Typically, FES cycling controllers use cooperating muscles and an electric motor to track cadence. In this paper, in addition to cooperative cadence tracking, the motorized cycle tracks an admittance trajectory generated using torque feedback. This method allows the cycle to deviate from the desired cadence trajectory and admit to the rider-applied torque, ensuring safe human-machine interaction. Two sets of uncertain, nonlinear dynamics are presented, one for the human rider and one for the robot, linked by a common measurable interaction torque. After developing cadence and admittance controllers, a Lyapunov-like switched system stability analysis is provided to prove global exponential tracking of the cadence error system, and a passivity analysis is conducted to prove passivity of the cycle’s admittance controller with respect to the rider’s interaction torque. *Note this paper does not properly cite the specific project.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    