Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Task-specific, trajectory-based control methods commonly used in exoskeletons may be appropriate for individuals with paraplegia, but they overly constrain the volitional motion of individuals with remnant voluntary ability (representing a far larger population). Human-exoskeleton systems can be represented in the form of the Euler-Lagrange equations or, equivalently, the port-controlled Hamiltonian equations to design control laws that provide task-invariant assistance across a continuum of activities/environments by altering energetic properties of the human body. We previously introduced a port-controlled Hamiltonian framework that parameterizes the control law through basis functions related to gravitational and gyroscopic terms, which are optimized to fit normalized able-bodied joint torques across multiple walking gaits on different ground inclines. However, this approach did not have the flexibility to reproduce joint torques for a broader set of activities, including stair climbing and stand-to-sit, due to strict assumptions related to input-output passivity, which ensures the human remains in control of energy growth in the closed-loop dynamics. To provide biomimetic assistance across all primary activities of daily life, this paper generalizes this energy shaping framework by incorporating vertical ground reaction forces and global planar orientation into the basis set, while preserving passivity between the human joint torques and human joint velocities. We present an experimental implementation on a powered knee-ankle exoskeleton used by three able-bodied human subjects during walking on various inclines, ramp ascent/descent, and stand-to-sit, demonstrating the versatility of this control approach and its effect on muscular effort.more » « less
-
This paper presents a method to design a nonholonomic virtual constraint (NHVC) controller that produces multiple distinct stance-phase trajectories for corresponding walking speeds. NHVCs encode velocity-dependent joint trajectories via momenta conjugate to the unactuated degree(s)-of-freedom of the system. We recently introduced a method for designing NHVCs that allow for stable bipedal robotic walking across variable terrain slopes. This work extends the notion of NHVCs for application to variable-cadence powered prostheses. Using the segmental conjugate momentum for the prosthesis, an optimization problem is used to design a single stance-phase NHVC for three distinct walking speed trajectories (slow, normal, and fast). This stance-phase controller is implemented with a holonomic swing phase controller on a powered knee-ankle prosthesis, and experiments are conducted with an able-bodied user walking in steady and non-steady velocity conditions. The control scheme is capable of representing 1) multiple, task-dependent reference trajectories, and 2) walking gait variance due to both temporal and kinematic changes in user motion.more » « less
-
Abstract This paper explores new ways to use energy shaping and regulation methods in walking systems to generate new passive-like gaits and dynamically transition between them. We recapitulate a control framework for Lagrangian hybrid systems, and show that regulating a state varying energy function is equivalent to applying energy shaping and regulating the system to a constant energy value. We then consider a simple one-dimensional hopping robot and show how energy shaping and regulation control can be used to generate and transition between nearly globally stable hopping limit cycles. The principles from this example are then applied on two canonical walking models, the spring loaded inverted pendulum (SLIP) and compass gait biped, to generate and transition between locomotive gaits. These examples show that piecewise jumps in control parameters can be used to achieve stable changes in desired gait characteristics dynamically/online.more » « less
-
null (Ed.)This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.more » « less
-
null (Ed.)Task-invariant control methods for powered exoskeletons provide flexibility in assisting humans across multiple activities and environments. Energy shaping control serves this purpose by altering the human body’s dynamic characteristics in closed loop. Our previous work on potential energy shaping alters the gravitational vector to reduce the user’s perceived gravity, but this method cannot provide velocity-dependent assistance. The interconnection and damping assignment passivity-based control (IDA-PBC) method provides more freedom to shape a dynamical system’s energy through the interconnection structure of a port-controlled Hamiltonian system model. This paper derives a novel energetic control strategy based on IDA-PBC for a backdrivable knee-ankle exoskeleton. The control law provides torques that depend on various basis functions related to gravitational and gyroscopic terms. We optimize a set of constant weighting parameters for these basis functions to obtain a control law that produces able-bodied joint torques during walking on multiple ground slopes. We perform experiments with an able-bodied human subject wearing a knee-ankle exoskeleton to demonstrate reduced activation in certain lower-limb muscles.more » « less
-
This paper presents the design and implementation of a novel multi-activity control strategy for a backdrivable knee-ankle exoskeleton. Traditionally, exoskeletons have used trajectory-based control of highly geared actuators for complete motion assistance. In contrast, we develop a potential energy shaping controller with ground reaction force (GRF) feedback that facilitates multi-activity assistance from a backdrivable exoskeleton without prescribing pre-defined kinematics. Although potential energy shaping was previously implemented in an exoskeleton to reduce the user’s perceived gravity, this model-based approach assumes the stance leg is fully loaded with the weight of the user, resulting in excessive control torques as weight transfers to the contralateral leg during double support. The presented approach uses GRF feedback to taper the torque control output for any activity involving multiple supports, leading to a closer match with normative joint moments in simulations based on pre-recorded human data during level walking. To implement this strategy, we present a custom foot force sensor that provides GRF feedback to the previously designed exoskeleton. Finally, results from an able-bodied human subject experiment demonstrate that the exoskeleton is able to reduce muscular activation of the primary muscles related to the knee and ankle joints during sit-to-stand, stand-to-sit, level walking, and stair climbing.more » « less
-
Task-invariant feedback control laws for powered exoskeletons are preferred to assist human users across varying locomotor activities. This goal can be achieved with energy shaping methods, where certain nonlinear partial differential equations, i.e., matching conditions, must be satisfied to find the achievable dynamics. Based on the energy shaping methods, open-loop systems can be mapped to closed-loop systems with a desired analytical expression of energy. In this paper, the desired energy consists of modified potential energy that is well-defined and unified across different contact conditions along with the energy of virtual springs and dampers that improve energy recycling during walking. The human-exoskeleton system achieves the input-output passivity and Lyapunov stability during the whole walking period with the proposed method. The corresponding controller provides assistive torques that closely match the human torques of a simulated biped model and able-bodied human subjects’ data.more » « less