skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SchemaDrill: Interactive Semi-Structured Schema Design
Ad-hoc data models like JSON make it easy to evolve schemas and to multiplex different data-types into a single stream. This flexibility makes JSON great for generating data, but also makes it much harder to query, ingest into a database, and index. In this paper, we explore the first step of JSON data loading: schema design. Specifically, we consider the challenge of designing schemas for existing JSON datasets as an interactive problem. We present SchemaDrill, a roll-up/drill-down style interface for exploring collections of JSON records. SchemaDrill helps users to visualize the collection, identify relevant fragments, and map it down into one or more flat, relational schemas. We describe and evaluate two key components of SchemaDrill: (1) A summary schema representation that significantly reduces the complexity of JSON schemas without a meaningful reduction in information content, and (2) A collection of schema visualizations that help users to qualitatively survey variability amongst different schemas in the collection.  more » « less
Award ID(s):
1640864 1750460
PAR ID:
10061133
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Workshop on Human-In-the-Loop Data Analytics
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ad-hoc data models like Json simplify schema evolution and enable multiplexing various data sources into a single stream. While useful when writing data, this flexibility makes Json harder to validate and query, forcing such tasks to rely on automated schema discovery techniques. Unfortunately, ambiguity in the schema design space forces existing schema discovery systems to make simplifying, data-independent assumptions about schema structure. When these assumptions are violated, most notably by APIs, the generated schemas are imprecise, creating numerous opportunities for false positives during validation. In this paper, we propose Jxplain, a Json schema discovery algorithm with heuristics that mitigate common forms of ambiguity. Although Jxplain is slightly slower than state of the art schema extractors, we show that it produces significantly more precise schemas. 
    more » « less
  2. The popularity of JSON as a data interchange format resulted in big amounts of datasets available for processing. Users would like to analyze this data using SQL queries but existing distributed systems limit their users to only two specific formats, JSONLine and GeoJSON. The complexity of JSON schema makes it challenging to parse arbitrary files in a modern distributed system while producing records with unified schema that can be processed with SQL. To address these challenges, this paper introduces dsJSON, a state-of-the-art distributed JSON processor that overcomes limitations in existing systems and scales to big and complex data. dsJSON introduces the projection tree, a novel data structure that applies selective parsing of nested attributes to produce records that are ready for SQL processors. The key objective of the projection tree is to parse a big JSON file in parallel to produce records with a unified schema that can be processed with SQL. dsJSON is integrated into SparkSQL which enables users to run arbitrary SQL queries on complex JSON files. It also pushes projection and filter down into the parser for full integration between the parser and the processor. Experiments on up-to two terabytes of real data show that dsJSON performs several times faster than existing systems. It can also efficiently parse extremely large files not supported by existing distributed parsers 
    more » « less
  3. The rigid schemas of classical relational databases help users in specifying queries and inform the storage organization of data. However, the advantages of schemas come at a high upfront cost through schema and ETL process design. In this work, we propose a new paradigm where the database system takes a more active role in schema development and data integration. We refer to this approach as adaptive schema databases (ASDs). An ASD ingests semi-structured or unstructured data directly using a pluggable combination of extraction and data integration techniques. Over time it discovers and adapts schemas for the ingested data using information provided by data integration and information extraction techniques, as well as from queries and user-feedback. In contrast to relational databases, ASDs maintain multiple schema workspaces that represent individualized views over the data, which are fine-tuned to the needs of a particular user or group of users. A novel aspect of ASDs is that probabilistic database techniques are used to encode ambiguity in automatically generated data extraction workflows and in generated schemas. ASDs can provide users with context-dependent feedback on the quality of a schema, both in terms of its ability to satisfy a user's queries, and the quality of the resulting answers. We outline our vision for ASDs, and present a proof of concept implementation as part of the Mimir probabilistic data curation system. 
    more » « less
  4. Event schemas are a form of world knowledge about the typical progression of events. Recent methods for event schema induction use information extraction systems to construct a large number of event graph instances from documents, and then learn to generalize the schema from such instances. In contrast, we propose to treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs). This new paradigm greatly simplifies the schema induction process and allows us to handle both hierarchical relations and temporal relations between events in a straightforward way. Since event schemas have complex graph structures, we design an incremental prompting and verification method INCPROMPT to break down the construction of a complex event graph into three stages: event skeleton construction, event expansion, and event-event relation verification. Compared to directly using LLMs to generate a linearized graph, INCPROMPT can generate large and complex schemas with 7.2% F1 improvement in temporal relations and 31.0% F1 improvement in hierarchical relations. In addition, compared to the previous state-of-the-art closed-domain schema induction model, human assessors were able to cover ∼10% more events when translating the schemas into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in terms of readability. 
    more » « less
  5. Since the early days of relational databases, it was realized that acyclic hypergraphs give rise to database schemas with desirable structural and algorithmic properties. In a bynow classical paper, Beeri, Fagin, Maier, and Yannakakis established several different equivalent characterizations of acyclicity; in particular, they showed that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for relations over that schema holds, which means that every collection of pairwise consistent relations over the schema is globally consistent. Even though real-life databases consist of bags (multisets), there has not been a study of the interplay between local consistency and global consistency for bags. We embark on such a study here and we first show that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for bags over that schema holds. After this, we explore algorithmic aspects of global consistency for bags by analyzing the computational complexity of the global consistency problem for bags: given a collection of bags, are these bags globally consistent? We show that this problem is in NP, even when the schema is part of the input. We then establish the following dichotomy theorem for fixed schemas: if the schema is acyclic, then the global consistency problem for bags is solvable in polynomial time, while if the schema is cyclic, then the global consistency problem for bags is NP-complete. The latter result contrasts sharply with the state of affairs for relations, where, for each fixed schema, the global consistency problem for relations is solvable in polynomial time. 
    more » « less