skip to main content


Title: A Multi-Step Approach to Assessing LIGO Test Mass Coatings
Photographs of the LIGO Gravitational Wave detector mirrors illuminated by the standing beam were analyzed with an astronomical software tool designed to identify stars within images, which extracted hundreds of thousands of point-like scatterers uniformly distributed across the mirror surface, likely distributed through the depth of the coating layers. The sheer number of the observed scatterers implies a fundamental, thermodynamic origin during deposition or processing. If identified as crystallites, these scatterers would be a possible source of the mirror dissipation and thermal noise, which limit the sensitivity of observatories to Gravitational Waves. In order to learn more about the composition and location of the detected scatterers, a feasibility study is underway to develop a method that determines the location of the scatterers by producing a complete mapping of scatterers within test samples, including their depth distribution, optical amplitude distribution, and lateral distribution. Also, research is underway to accurately identify future materials and/or coating methods that possess the largest possible mechanical quality factor (Q). Current efforts propose a new experimental approach that will more precisely measure the Q of coatings by depositing them onto 100 nm Silicon Nitride membranes.  more » « less
Award ID(s):
1707868
NSF-PAR ID:
10061499
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of physics. Conference series
Volume:
957
Issue:
1
ISSN:
1742-6596
Page Range / eLocation ID:
012010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photographs of the LIGO Gravitational Wave detector mirrors illuminated by the standing beam were analyzed with an astronomical software tool designed to identify stars within images, which extracted hundreds of thousands of point-like scatterers uniformly distributed across the mirror surface, likely distributed through the depth of the coating layers. The sheer number of the observed scatterers implies a fundamental, thermodynamic origin during deposition or processing. These scatterers are a possible source of the mirror dissipation and thermal noise foreseen by V. Braginsky and Y. Levin, which limits the sensitivity of observatories to Gravitational Waves. This study may point the way towards the production of mirrors with reduced thermal noise and an increased detection range. 
    more » « less
  2. Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, viruses and other microscopic organisms essential for the health of the planet. These ‘marine plankton’ are unable to swim against currents and should therefore be constantly on the move, yet previous studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. However, proving this theory has been challenging; collecting plankton is logistically difficult, and it is often impossible to distinguish between species simply by examining them under a microscope. However, within the last decade, a research schooner called Tara has travelled the globe to gather thousands of plankton samples. At the same time, advances in genomics have made it possible to identify species based only on fragments of their DNA sequence. To understand the hidden geography of plankton communities in Earth’s oceans, Richter et al. pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist the flow of water, various planktonic species which live close to the surface manage to occupy distinct, stable provinces shaped by currents. Different sizes of plankton are distributed in different sized provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similarities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton communities. Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. These results could allow deeper investigation by marine modellers, ecologists, and evolutionary biologists. Meanwhile, work is already underway to investigate how climate change might impact this hidden geography. 
    more » « less
  3. Abstract

    Meta‐optics have rapidly become a major research field within the optics and photonics community, strongly driven by the seemingly limitless opportunities made possible by controlling optical wavefronts through interaction with arrays of sub‐wavelength scatterers. As more and more modalities are explored, the design strategies to achieve desired functionalities become increasingly demanding, necessitating more advanced design techniques. Herein, the inverse design approach is utilized to create a set of single‐layer meta‐optics that simultaneously focus light and shape the spectra of focused light without using any filters. Thus, both spatial and spectral properties of the meta‐optics are optimized, resulting in spectra that mimic the color matching functions of the CIE 1931 XYZ color space, which links the spectral distribution of a light source to the color perception of a human eye. Experimental demonstrations of these meta‐optics show qualitative agreement with the theoretical predictions and help elucidate the focusing mechanism of these devices.

     
    more » « less
  4. Abstract

    Brownian coating thermal noise in detector test masses is limiting the sensitivity of current gravitational-wave detectors on Earth. Therefore, accurate numerical models can inform the ongoing effort to minimize Brownian coating thermal noise in current and future gravitational-wave detectors. Such numerical models typically require significant computational resources and time, and often involve closed-source commercial codes. In contrast, open-source codes give complete visibility and control of the simulated physics, enable direct assessment of the numerical accuracy, and support the reproducibility of results. In this article, we use the open-sourceSpECTREnumerical relativity code and adopt a novel discontinuous Galerkin numerical method to model Brownian coating thermal noise. We demonstrate thatSpECTREachieves significantly higher accuracy than a previous approach at a fraction of the computational cost. Furthermore, we numerically model Brownian coating thermal noise in multiple sub-wavelength crystalline coating layers for the first time. Our new numerical method has the potential to enable fast exploration of realistic mirror configurations, and hence to guide the search for optimal mirror geometries, beam shapes and coating materials for gravitational-wave detectors.

     
    more » « less
  5. Abstract Aim

    Species with wide distributions spanning the African Guinean and Congolian rain forests are often composed of genetically distinct populations or cryptic species with geographic distributions that mirror the locations of the remaining forest habitats. We used phylogeographic inference and demographic model testing to evaluate diversification models in a widespread rain forest species, the African foam‐nest treefrogChiromantis rufescens.

    Location

    Guinean and Congolian rain forests, West and Central Africa.

    Taxon

    Chiromantis rufescens.

    Methods

    We collected mitochondrial DNA (mtDNA) and single‐nucleotide polymorphism (SNP) data for 130 samples ofC. rufescens. After estimating population structure and inferring species trees using coalescent methods, we tested demographic models to evaluate alternative population divergence histories that varied with respect to gene flow, population size change and periods of isolation and secondary contact. Species distribution models were used to identify the regions of climatic stability that could have served as forest refugia since the last interglacial.

    Results

    Population structure withinC. rufescensresembles the major biogeographic regions of the Guinean and Congolian forests. Coalescent‐based phylogenetic analyses provide strong support for an early divergence between the western Upper Guinean forest and the remaining populations. Demographic inferences support diversification models with gene flow and population size changes even in cases where contemporary populations are currently allopatric, which provides support for forest refugia and barrier models. Species distribution models suggest that forest refugia were available for each of the populations throughout the Pleistocene.

    Main conclusions

    Considering historical demography is essential for understanding population diversification, especially in complex landscapes such as those found in the Guineo–Congolian forest. Population demographic inferences help connect the patterns of genetic variation to diversification model predictions. The diversification history ofC. rufescenswas shaped by a variety of processes, including vicariance from river barriers, forest fragmentation and adaptive evolution along environmental gradients.

     
    more » « less