Photographs of the LIGO Gravitational Wave detector mirrors illuminated by the standing beam were analyzed with an astronomical software tool designed to identify stars within images, which extracted hundreds of thousands of point-like scatterers uniformly distributed across the mirror surface, likely distributed through the depth of the coating layers. The sheer number of the observed scatterers implies a fundamental, thermodynamic origin during deposition or processing. These scatterers are a possible source of the mirror dissipation and thermal noise foreseen by V. Braginsky and Y. Levin, which limits the sensitivity of observatories to Gravitational Waves. This study may point the way towards the production of mirrors with reduced thermal noise and an increased detection range.
more »
« less
A Multi-Step Approach to Assessing LIGO Test Mass Coatings
Photographs of the LIGO Gravitational Wave detector mirrors illuminated by the standing beam were analyzed with an astronomical software tool designed to identify stars within images, which extracted hundreds of thousands of point-like scatterers uniformly distributed across the mirror surface, likely distributed through the depth of the coating layers. The sheer number of the observed scatterers implies a fundamental, thermodynamic origin during deposition or processing. If identified as crystallites, these scatterers would be a possible source of the mirror dissipation and thermal noise, which limit the sensitivity of observatories to Gravitational Waves. In order to learn more about the composition and location of the detected scatterers, a feasibility study is underway to develop a method that determines the location of the scatterers by producing a complete mapping of scatterers within test samples, including their depth distribution, optical amplitude distribution, and lateral distribution. Also, research is underway to accurately identify future materials and/or coating methods that possess the largest possible mechanical quality factor (Q). Current efforts propose a new experimental approach that will more precisely measure the Q of coatings by depositing them onto 100 nm Silicon Nitride membranes.
more »
« less
- Award ID(s):
- 1707868
- PAR ID:
- 10061499
- Date Published:
- Journal Name:
- Journal of physics. Conference series
- Volume:
- 957
- Issue:
- 1
- ISSN:
- 1742-6596
- Page Range / eLocation ID:
- 012010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Defects can be introduced within a 2-D periodic lattice to realize phononic cavities or phononic crystal (PnC) waveguides at the ultrasonic frequency range. The arrangement of these defects within a PnC lattice results in the modification of the Q factor of the cavity or the waveguide. In this work, cavity defects within a PnC formed using cylindrical stainless steel scatterers in water have been modified to control the propagation and Q factor of acoustic waveguides realized through defect channels. The defects channel based waveguides within the PnC were configured horizontally, vertically, and diagonally along the direction of the propagation of the acoustic waves. Numerical simulations supported by experimental demonstration indicate that the defect-based waveguide's Q factor is improved by over 15 times for the diagonal configuration compared to the horizontal configuration. It also increases due to an increase in the scatterers' radius, varied from 0.7 -0.95 mm.more » « less
-
Abstract Brownian coating thermal noise in detector test masses is limiting the sensitivity of current gravitational-wave detectors on Earth. Therefore, accurate numerical models can inform the ongoing effort to minimize Brownian coating thermal noise in current and future gravitational-wave detectors. Such numerical models typically require significant computational resources and time, and often involve closed-source commercial codes. In contrast, open-source codes give complete visibility and control of the simulated physics, enable direct assessment of the numerical accuracy, and support the reproducibility of results. In this article, we use the open-sourceSpECTREnumerical relativity code and adopt a novel discontinuous Galerkin numerical method to model Brownian coating thermal noise. We demonstrate thatSpECTREachieves significantly higher accuracy than a previous approach at a fraction of the computational cost. Furthermore, we numerically model Brownian coating thermal noise in multiple sub-wavelength crystalline coating layers for the first time. Our new numerical method has the potential to enable fast exploration of realistic mirror configurations, and hence to guide the search for optimal mirror geometries, beam shapes and coating materials for gravitational-wave detectors.more » « less
-
A bstract We explore the possibility of discovering the mirror baryons and electrons of the Mirror Twin Higgs model in direct detection experiments, in a scenario in which these particles constitute a subcomponent of the observed DM. We consider a framework in which the mirror fermions are sub-nano-charged, as a consequence of kinetic mixing between the photon and its mirror counterpart. We consider both nuclear recoil and electron recoil experiments. The event rates depend on the fraction of mirror DM that is ionized, and also on its distribution in the galaxy. Since mirror DM is dissipative, at the location of the Earth it may be in the form of a halo or may have collapsed into a disk, depending on the cooling rate. For a given mirror DM abundance we determine the expected event rates in direct detection experiments for the limiting cases of an ionized halo, an ionized disk, an atomic halo and an atomic disk. We find that by taking advantage of the complementarity of the different experiments, it may be possible to establish not just the multi-component nature of mirror dark matter, but also its distribution in the galaxy. In addition, a study of the recoil energies may be able to determine the masses and charges of the constituents of the mirror sector. By showing that the mass and charge of mirror helium are integer multiples of those of mirror hydrogen, these experiments have the potential to distinguish the mirror nature of the theory. We also carefully consider mirror plasma screening effects, showing that the capture of mirror dark matter particles in the Earth has at most a modest effect on direct detection signals.more » « less
-
Gravitational waves are detected using resonant optical cavity interferometers. The mirror coatings’ inherent thermal noise and photon scattering limit sensitivity. Crystals within the reflective coating may be responsible for either or both noise sources. In this study, we explored crystallization reduction in zirconia through nano-layering with silica. We used X-ray diffraction (XRD) to monitor crystal growth between successive annealing cycles. We observed crystal formation at higher temperatures in thinner zirconia layers, indicating that silica is a successful inhibitor of crystal growth. However, the thinnest barriers break down at high temperatures, thus allowing crystal growth beyond each nano-layer. In addition, in samples with thicker zirconia layers, we observe that crystallization saturates with a significant portion of amorphous material remaining.more » « less
An official website of the United States government

