skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-functional low-cost epoxy based nanocomposite corrosion resistant coatings
Corrosion is a significant global issue, resulting in high maintenance and repair costs. Long term structural integrity of metal and its products is directly dependent on its anti-corrosive properties. Surfaces exposed to marine environments are prone to microbial attachment followed by biofilm formation, resulting in bio-fouling. Hence coatings are used to protect the surfaces against corrosion and biofilm formation. Currently various organic coatings are used to protect metals and the cost of these coatings is directly dependent upon the cost of the fillers used to impart specific properties. Conventionally fillers such as zinc, Titanium and Silver based compounds are used in coatings for corrosion and/or microbial protection of surfaces, which are expensive. The underlying issue with using these compounds as fillers is that they can adversely effect mechanical and barrier properties, due to which they are used as a base coat and additional fillers are used to compensate for such property losses. Most of these coatings need an enhanced anti-microbial surface and improvement in their barrier efficacy against water/moisture, oxygen, and chloride ions. Hence it is imperative to develop low-cost fillers that will enhance both active & passive corrosion resistance properties, prevent microbial attachment on the surfaces and will not degrade any polymeric properties. In this work, ASL is developing a multi-functional low cost epoxy-clay nanocomposite coating, for microbial and corrosion resistance. Multi-functional coatings are developed using a multi-component approach, where the innovation lays in deriving the benefits of various fillers through a combinatorial approach to synergistic harvesting of functionality and vigor. The primary filler is a naturally abundant clay material and, owing to their sheet like morphology and layered structures, their surface can be modified to achieve the desired property enhancements. Sheet like morphology enhances polymer filler interactions, resulting in enhanced mechanical and reduced barrier properties. The presence of clay in the coating materials will mitigate the impact of moisture and chloride ions (in marine environment) providing passive protection to the coated surface. Modification of clay with transition metal ions (TMI) enhances corrosion resistance properties of coatings.  more » « less
Award ID(s):
1648922
PAR ID:
10061870
Author(s) / Creator(s):
;
Date Published:
Journal Name:
MegaRust 2017 Organized by the American Society of Naval Engineers
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multifunctional coatings with simultaneous antibacterial and anticorrosive properties are essential for marine environments, oil and gas industry, medical settings, and domestic/public appliances to preserve integrity and functionality of pipes, instruments, and surfaces. In this work, we developed a simple and effective method to prepare graphene oxide (GO)-hybridized waterborne epoxy (GOWE) coating to simultaneously improve anticorrosive and antibacterial properties . The effects of different GO filler ratios (0.05, 0.1, and 0.5, 1 wt%) on the electrochemical and antibacterial behaviors of the waterborne epoxy coating were investigated over short- and long-term periods. The electrochemical behavior was analyzed with salt solution for 64 days. The antibacterial effect of GOWE coating was evaluated with Shewanella oneidensis (MR-1), which is a microorganism that can be involved in corrosion. Our results revealed that concentrations as low as 0.1 wt% of the GO was effective performance than the waterborne epoxy coating without graphene oxide. This result is due to the high hydrophilicity of the graphene oxide fillers, which allowed great dispersion in the waterborne epoxy coating matrix. Furthermore, this study used a corrosion relevant bacterium as a model organism, that is, Shewanella oneidensis (MR-1), which is more relevant for real-word applications. This as-prepared GO-hybridized waterborne polymeric hybrid film provides new insight into the application of 2D nanomaterial polymer composites for simultaneous anticorrosive and antibacterial applications. 
    more » « less
  2. This study examined the influence of laboratory corrosion testing methods, specifically salt spray, and immersion tests, on the long-term performance assessment of wire-arc-sprayed Zn-Al coatings. Two Zn-Al alloyed systems, Zn-15Al and Zn-Al pseudo-alloy, were selected for investigation, subjecting them to 1000 h of immersion and salt spray conditions. Electrochemical impedance spectroscopy was used to monitor corrosion progression in both coating systems at 200-h intervals. Post-exposure, the coatings underwent microstructural and chemical characterization, along with potentiodynamic polarization tests. Furthermore, some specimens in both coating systems were intentionally damaged and exposed to 1000 h of salt spray and immersion testing and analyzed with scanning electron microscopy. Immersion testing yielded similar results for both coatings, while salt spray testing unveiled significant differences and highlighted the susceptibility of the Zn-15Al to salt spray in both undamaged and damaged states. The continuously refreshed salt spray electrolyte hindered stable corrosion product formation, allowing chloride penetration and increased corrosion in Zn-15Al. Conversely, the Zn-Al pseudo-alloy coating formed Al (OH)3, acting as a barrier against chloride penetration during salt spray and offering superior protection. In summary, salt spray testing proved more aggressive than immersion when evaluating Zn-Al coatings with high zinc content primarily relying on active dissolution for corrosion protection. 
    more » « less
  3. Coatings, either soft or hard, are commonly used to protect steel against corrosion for longer service life. With coatings, assessing the corrosion behavior and status of the substrate is challenging without destructive analysis. In this paper, fiber Bragg (FBG) grating sensors were proposed to nondestructively evaluate the corrosion behavior of steel coated with two popular coatings, including the polymeric and wire arc sprayed Al-Zn coating. Laboratory accelerated corrosion tests demonstrated that the embedded FBG sensors inside both the soft and hard coatings can effectively quantify the corrosion rate, monitor the corrosion progress, and detect the coating damages and crack propagation of coated steel in real time. The laboratory electrochemical corrosion test on the wire arc sprayed Al-Zn coating validated the proposed embedded FBG sensor method with a good agreement in comparison. The proposed sensing platform provides an alternative nondestructive real-time corrosion assessment approach for coated steel in the field. 
    more » « less
  4. null (Ed.)
    Abstract Antimicrobial surface coatings function as a contact biocide and are extensively used to prevent the growth and transmission of pathogens on environmental surfaces. Currently, scientists and researchers are intensively working to develop antimicrobial, antiviral coating solutions that would efficiently impede/stop the contagion of COVID-19 via surface contamination. Herein we present a flavonoid-based antimicrobial surface coating fabricated by laser processing that has the potential to eradicate COVID-19 contact transmission. Quercetin-containing coatings showed better resistance to microbial colonization than antibiotic–containing ones. 
    more » « less
  5. Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission. 
    more » « less