skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transport of anisotropic particles under waves
Using a numerical model, we analyse the effects of shape on both the orientation and transport of anisotropic particles in wavy flows. The particles are idealized as prolate and oblate spheroids, and we consider the regime of small Stokes and particle Reynolds numbers. We find that the particles preferentially align into the shear plane with a mean orientation that is solely a function of their aspect ratio. This alignment, however, differs from the Jeffery orbits that occur in the residual shear flow (that is, the Stokes drift velocity field) in the absence of waves. Since the drag on an anisotropic particle depends on its alignment with the flow, this preferred orientation determines the effective drag on the particles, which in turn impacts their net downstream transport. We also find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We show that this dispersion is a function of the particle’s eccentricity and the ratio of the settling and wave time scales. Due to this preferential alignment, we find that a plume of anisotropic particles in waves is on average transported farther but dispersed less than it would be if the particles were randomly oriented. Our results demonstrate that accurate prediction of the transport of anisotropic particles in wavy environments, such as microplastic particles in the ocean, requires the consideration of these preferential alignment effects.  more » « less
Award ID(s):
1706586
PAR ID:
10062299
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
837
ISSN:
0022-1120
Page Range / eLocation ID:
320 to 340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Particulate matter in the environment, such as sediment, marine debris and plankton, is transported by surface waves. The transport of these inertial particles is different from that of fluid parcels described by Stokes drift. In this study, we consider the transport of negatively buoyant particles that settle in flow induced by surface waves as described by linear wave theory in arbitrary depth. We consider particles that fall under both a linear drag regime in the low Reynolds number limit and in a nonlinear drag regime in the transitional Reynolds number range. Based on an analysis of typical applications, we find that the nonlinear regime is the most widely applicable. From an expansion in the particle Stokes number, we find kinematic expressions for inertial particle motion in waves, and from a multiscale expansion in the dimensionless wave amplitude, we find expressions for the wave-averaged drift velocities. These drift velocities are analogous to Stokes drift and can be used in large-scale models that do not resolve surface waves. We find that the horizontal drift velocity is reduced relative to the Stokes drift of fluid parcels and that the vertical drift velocity is enhanced relative to the particle terminal settling velocity. We also demonstrate that a cloud of settling particles released simultaneously will disperse in the horizontal direction. Finally, we discuss the accuracy of our expressions by comparing against numerical simulations, which show excellent agreement, and against experimental data, which show the same trends. 
    more » « less
  2. Understanding the orientation dynamics of anisotropic colloidal particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in shear flow, the orientation dynamics of non-spherical Brownian particles are poorly understood. Here we analytically calculate the time-dependent orientation distributions for non-spherical axisymmetric particles confined to rotate in the flow–gradient plane, in the limit of small but non-zero Brownian diffusivity. For continuous shear, despite the complicated dynamics arising from the particle rotations, we find a coordinate change that maps the orientation dynamics to a diffusion equation with a remarkably simple ratio of the enhanced rotary diffusivity to the zero shear diffusion: $$D_{eff}^{r}/D_{0}^{r}=(3/8)(p-1/p)^{2}+1$$ , where $$p$$ is the particle aspect ratio. For oscillatory shear, the enhanced diffusion becomes orientation dependent and drastically alters the long-time orientation distributions. We describe a general method for solving the time-dependent oscillatory shear distributions and finding the effective diffusion constant. As an illustration, we use this method to solve for the diffusion and distributions in the case of triangle-wave oscillatory shear and find that they depend strongly on the strain amplitude and particle aspect ratio. These results provide new insight into the time-dependent rheology of suspensions of anisotropic particles. For continuous shear, we find two distinct diffusive time scales in the rheology that scale separately with aspect ratio $$p$$ , as $$1/D_{0}^{r}p^{4}$$ and as $$1/D_{0}^{r}p^{2}$$ for $$p\gg 1$$ . For oscillatory shear flows, the intrinsic viscosity oscillates with the strain amplitude. Finally, we show the relevance of our results to real suspensions in which particles can rotate freely. Collectively, the interplay between shear-induced rotations and diffusion has rich structure and strong effects: for a particle with aspect ratio 10, the oscillatory shear intrinsic viscosity varies by a factor of $${\approx}2$$ and the rotational diffusion by a factor of $${\approx}40$$ . 
    more » « less
  3. Particle-laden flows of sedimenting solid particles or droplets in a carrier gas have strong inter-phase coupling. Even at low particle volume fractions, the two-way coupling can be significant due to the large particle to gas density ratio. In this semi-dilute regime, the slip velocity between phases leads to sustained clustering that strongly modulates the overall flow. The analysis of perturbations in homogeneous shear reveals the process by which clusters form: (i) the preferential concentration of inertial particles in the stretching regions of the flow leads to the formation of highly concentrated particle sheets, (ii) the thickness of the latter is controlled by particle-trajectory crossing, which causes a local dispersion of particles, (iii) a transverse Rayleigh–Taylor instability, aided by the shear-induced rotation of the particle sheets towards the gravity normal direction, breaks the planar structure into smaller clusters. Simulations in the Euler–Lagrange formalism are compared to Euler–Euler simulations with the two-fluid and anisotropic-Gaussian methods. It is found that the two-fluid method is unable to capture the particle dispersion due to particle-trajectory crossing and leads instead to the formation of discontinuities. These are removed with the anisotropic-Gaussian method which derives from a kinetic approach with particle-trajectory crossing in mind. 
    more » « less
  4. A Eulerian—Lagrangian model has been developed to simulate particle attachment to surfaces with arc-shaped ribs in a two-dimensional channel flow at low Reynolds numbers. Numerical simulation has been performed to improve the quantitative understanding of how rib geometries enhance shear rates and particle-surface interact for various particle sizes and flow velocities. The enhanced shear rate is attributed to the wavy flows that develop over the ribbed surface and the weak vortices that form between adjacent ribs. Varying pitch-to-height ratio can alter the amplitude of the wavy flow and the angle of attack of the fluid on the ribs. In the presence of these two competing factors, the rib geometry with a pitch-to-height ratio of two demonstrates the greatest shear rate and the lowest fraction of particle attachment. However, the ribbed surfaces have negligible effects on small particles at low velocities. A force analysis identifies a threshold shear rate to reduce particle attachment. The simulated particle distributions over the ribbed surfaces are highly non-uniform for larger particles at higher velocities. The understanding of the effect of surface topography on particle attachment will benefit the design of surface textures for mitigating particulate fouling in a wide range of applications. 
    more » « less
  5. The drag force on a spherical intruder in dense granular shear flows is studied using discrete element method simulations. Three regimes of the intruder dynamics are observed depending on the magnitude of the drag force (or the corresponding intruder velocity) and the flow inertial number: a fluctuation-dominated regime for small drag forces; a viscous regime for intermediate drag forces; and an inertial (cavity formation) regime for large drag forces. The transition from the viscous regime (linear force-velocity relation) to the inertial regime (quadratic force-velocity relation) depends further on the inertial number. Despite these distinct intruder dynamics, we find a quantitative similarity between the intruder drag in granular shear flows and the Stokesian drag on a sphere in a viscous fluid for intruder Reynolds numbers spanning five orders of magnitude. Beyond this first-order description, a modified Stokes drag model is developed that accounts for the secondary dependence of the drag coefficient on the inertial number and the intruder size and density ratios. When the drag model is coupled with a segregation force model for intruders in dense granular flows, it is possible to predict the velocity of gravity-driven segregation of an intruder particle in shear flow simulations. 
    more » « less