skip to main content

Title: iNEAT: Incomplete Network Alignment
Network alignment and network completion are two fundamental cornerstones behind many high-impact graph mining applications. The state-of-the-arts have been addressing these tasks in parallel. In this paper, we argue that network alignment and completion are inherently complementary with each other, and hence propose to jointly address them so that the two tasks can benefit from each other. We formulate it from the optimization perspective, and propose an effective algorithm iNEAT to solve it. The proposed method offers two distinctive advantages. First (Alignment accuracy), our method benefits from higher-quality input networks while mitigates the effect of incorrectly inferred links introduced by the completion task itself. Second (Alignment efficiency), thanks to the low-rank structure of the complete networks and alignment matrix, the alignment can be significantly accelerated. The extensive experiments demonstrate the performance of our algorithm.
; ; ; ;
Award ID(s):
1651203 1743040 1715385 1947135 2003924
Publication Date:
Journal Name:
Page Range or eLocation-ID:
1189 to 1194
Sponsoring Org:
National Science Foundation
More Like this
  1. Network embedding has become the cornerstone of a variety of mining tasks, such as classification, link prediction, clustering, anomaly detection and many more, thanks to its superior ability to encode the intrinsic network characteristics in a compact low-dimensional space. Most of the existing methods focus on a single network and/or a single resolution, which generate embeddings of different network objects (node/subgraph/network) from different networks separately. A fundamental limitation with such methods is that the intrinsic relationship across different networks (e.g., two networks share same or similar subgraphs) and that across different resolutions (e.g., the node-subgraph membership) are ignored, resulting in disparate embeddings. Consequentially, it leads to sub-optimal performance or even becomes inapplicable for some downstream mining tasks (e.g., role classification, network alignment. etc.). In this paper, we propose a unified framework MrMine to learn the representations of objects from multiple networks at three complementary resolutions (i.e., network, subgraph and node) simultaneously. The key idea is to construct the cross-resolution cross-network context for each object. The proposed method bears two distinctive features. First, it enables and/or boosts various multi-network downstream mining tasks by having embeddings at different resolutions from different networks in the same embedding space. Second, Our method is efficientmore »and scalable, with a O(nlog(n)) time complexity for the base algorithm and a linear time complexity w.r.t. the number of nodes and edges of input networks for the accelerated version. Extensive experiments on real-world data show that our methods (1) are able to enable and enhance a variety of multi-network mining tasks, and (2) scale up to million-node networks.« less
  2. Network alignment (NA) is a fundamental problem in many application domains – from social networks, through biology and communications, to neuroscience. The main objective is to identify common nodes and most similar connections across multiple networks (resp. graphs). Many of the existing efforts focus on efficient anchor node linkage by leveraging various features and optimizing network mapping functions with the pairwise similarity between anchor nodes. Despite the recent advances, there still exist two kinds of challenges: (1) entangled node embeddings, arising from the contradictory goals of NA: embedding proximal nodes in a closed form for representation in a single network vs. discriminating among them when mapping the nodes across networks; and (2) lack of interpretability about the node matching and alignment, essential for understanding prediction tasks. We propose dNAME (disentangled Network Alignment with Matching Explainability) – a novel solution for NA in heterogeneous networks settings, based on a matching technique that embeds nodes in a disentangled and faithful manner. The NA task is cast as an adversarial optimization problem which learns a proximity-preserving model locally around the anchor nodes, while still being discriminative. We also introduce a method to explain our semi-supervised model with the theory of robust statistics, bymore »tracing the importance of each anchor node and its explanations on the NA performance. This is extensible to many other NA methods, as it provides model interpretability. Experiments conducted on several public datasets show that dNAME outperforms the state-of-the-art methods in terms of both network alignment precision and node matching ranking.« less
  3. Knowledge graph reasoning plays a pivotal role in many real-world applications, such as network alignment, computational fact-checking, recommendation, and many more. Among these applications, knowledge graph completion (KGC) and multi-hop question answering over knowledge graph (Multi-hop KGQA) are two representative reasoning tasks. In the vast majority of the existing works, the two tasks are considered separately with different models or algorithms. However, we envision that KGC and Multi-hop KGQA are closely related to each other. Therefore, the two tasks will benefit from each other if they are approached adequately. In this work, we propose a neural model named BiNet to jointly handle KGC and multi-hop KGQA, and formulate it as a multi-task learning problem. Specifically, our proposed model leverages a shared embedding space and an answer scoring module, which allows the two tasks to automatically share latent features and learn the interactions between natural language question decoder and answer scoring module. Compared to the existing methods, the proposed BiNet model addresses both multi-hop KGQA and KGC tasks simultaneously with superior performance. Experiment results show that BiNet outperforms state-of-the-art methods on a wide range of KGQA and KGC benchmark datasets.
  4. Research of Protein-Protein Interaction (PPI) Network Alignment is playing an important role in understanding the crucial underlying biological knowledge such as functionally homologous proteins and conserved evolutionary pathways across different species. Existing methods of PPI network alignment often try to improve the coverage ratio of the alignment result by aligning all proteins from different species. However, there is a fundamental biological premise that needs to be considered carefully: not every protein in a species can, nor should, find its homologous proteins in other species. In this work, we propose a novel alignment method to map only those proteins with the most similarity throughout the PPI networks of multiple species. For the similarity features of the protein in the networks, we integrate both topological features with biological characteristics to provide enhanced supports for the alignment procedures. For topological features, we apply a representation learning method on the networks that can generate a low dimensional vector embedding with its surrounding structural features for each protein. The topological similarity of proteins from different PPI networks can thus be transferred as the similarity of their corresponding vector representations, which provides a new way to comprehensively quantify the topological similarities between proteins. We also proposemore »a new measure for the topological evaluation of the alignment results which better uncover the structural quality of the alignment across multiple networks. Both biological and topological evaluations on the alignment results of real datasets demonstrate our approach is promising and preferable against previous multiple alignment methods« less
  5. Protein-protein interaction (PPI) network alignment has been motivating researches for the comprehension of the underlying crucial biological knowledge, such as conserved evolutionary pathways and functionally conserved proteins throughout different species. Existing PPI network alignment methods have tried to improve the coverage ratio by aligning all proteins from different species. However, there is a fundamental biological justification needed to be acknowledged, that not every protein in a species can, nor should, find homologous proteins in other species. In this paper, we propose a novel approach for multiple PPI network alignment that tries to align only those proteins with the most similarities. To provide more comprehensive supports in computing the similarity, we integrate structural features of the networks together with biological characteristics during the alignment. For the structural features, we apply on PPI networks a representation learning method, which creates a low-dimensional vector embedding with the surrounding topologies of each protein in the network. This approach quantifies the structural features, and provides a new way to determine the topological similarity of the networks by transferring which as calculations in vector similarities. We also propose a new metric for the topological evaluation which can better assess the topological quality of the alignment resultsmore »across different networks. Both biological and topological evaluations demonstrate our approach is promising and preferable against previous multiple alignment methods.« less