skip to main content

Search for: All records

Award ID contains: 1743040

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Subgraph matching is a core primitive across a number of disciplines, ranging from data mining, databases, information retrieval, computer vision to natural language processing. Despite decades of efforts, it is still highly challenging to balance between the matching accuracy and the computational efficiency, especially when the query graph and/or the data graph are large. In this paper, we propose an index-based algorithm (G-FINDER) to find the top-k approximate matching subgraphs. At the heart of the proposed algorithm are two techniques, including (1) a novel auxiliary data structure (LOOKUP-TABLE) in conjunction with a neighborhood expansion method to effectively and efficiently index candidate vertices, and (2) a dynamic filtering and refinement strategy to prune the false candidates at an early stage. The proposed G-FINDER bears some distinctive features, including (1) generality, being able to handle different types of inexact matching (e.g., missing nodes, missing edges, intermediate vertices) on node attributed and/or edge attributed graphs or multigraphs; (2) effectiveness, achieving up to 30% F1-Score improvement over the best known competitor; and (3) efficiency, scaling near-linearly w.r.t. the size of the data graph as well as the query graph.
  2. Network alignment is a fundamental task in many high-impact applications. Most of the existing approaches either explicitly or implicitly consider the alignment matrix as a linear transformation to map one network to another, and might overlook the complicated alignment relationship across networks. On the other hand, node representation learning based alignment methods are hampered by the incomparability among the node representations of different networks. In this paper, we propose a unified semi-supervised deep model (ORIGIN) that simultaneously finds the non-rigid network alignment and learns node representations in multiple networks in a mutually beneficial way. The key idea is to learn node representations by the effective graph convolutional networks, which subsequently enable us to formulate network alignment as a point set alignment problem. The proposed method offers two distinctive advantages. First (node representations), unlike the existing graph convolutional networks that aggregate the node information within a single network, we can effectively aggregate the auxiliary information from multiple sources, achieving far-reaching node representations. Second (network alignment), guided by the highquality node representations, our proposed non-rigid point set alignment approach overcomes the bottleneck of the linear transformation assumption. We conduct extensive experiments that demonstrate the proposed non-rigid alignment method is (1) effective, outperformingmore »both the state-of-the-art linear transformation-based methods and node representation based methods, and (2) efficient, with a comparable computational time between the proposed multi-network representation learning component and its single-network counterpart.« less
  3. Network embedding has become the cornerstone of a variety of mining tasks, such as classification, link prediction, clustering, anomaly detection and many more, thanks to its superior ability to encode the intrinsic network characteristics in a compact low-dimensional space. Most of the existing methods focus on a single network and/or a single resolution, which generate embeddings of different network objects (node/subgraph/network) from different networks separately. A fundamental limitation with such methods is that the intrinsic relationship across different networks (e.g., two networks share same or similar subgraphs) and that across different resolutions (e.g., the node-subgraph membership) are ignored, resulting in disparate embeddings. Consequentially, it leads to sub-optimal performance or even becomes inapplicable for some downstream mining tasks (e.g., role classification, network alignment. etc.). In this paper, we propose a unified framework MrMine to learn the representations of objects from multiple networks at three complementary resolutions (i.e., network, subgraph and node) simultaneously. The key idea is to construct the cross-resolution cross-network context for each object. The proposed method bears two distinctive features. First, it enables and/or boosts various multi-network downstream mining tasks by having embeddings at different resolutions from different networks in the same embedding space. Second, Our method is efficientmore »and scalable, with a O(nlog(n)) time complexity for the base algorithm and a linear time complexity w.r.t. the number of nodes and edges of input networks for the accelerated version. Extensive experiments on real-world data show that our methods (1) are able to enable and enhance a variety of multi-network mining tasks, and (2) scale up to million-node networks.« less
  4. Commit messages, which summarize the source code changes in natural language, are essential for program comprehension and software evolution understanding. Unfortunately, due to the lack of direct motivation, commit messages are sometimes neglected by developers, making it necessary to automatically generate such messages. State-of-the-art adopts learning based approaches such as neural machine translation models for the commit message generation problem. However, they tend to ignore the code structure information and suffer from the out-of-vocabulary issue. In this paper, we propose CoDiSum to address the above two limitations. In particular, we first extract both code structure and code semantics from the source code changes, and then jointly model these two sources of information so as to better learn the representations of the code changes. Moreover, we augment the model with copying mechanism to further mitigate the out-of-vocabulary issue. Experimental evaluations on real data demonstrate that the proposed approach significantly outperforms the state-of-the-art in terms of accurately generating the commit messages.
  5. Hashtags can greatly facilitate content navigation and improve user engagement in social media. Meaningful as it might be, recommending hashtags for photo sharing services such as Instagram and Pinterest remains a daunting task due to the following two reasons. On the endogenous side, posts in photo sharing services often contain both images and text, which are likely to be correlated with each other. Therefore, it is crucial to coherently model both image and text as well as the interaction between them. On the exogenous side, hashtags are generated by users and different users might come up with different tags for similar posts, due to their different preference and/or community effect. Therefore, it is highly desirable to characterize the users’ tagging habits. In this paper, we propose an integral and effective hashtag recommendation approach for photo sharing services. In particular, the proposed approach considers both the endogenous and exogenous effects by a content modeling module and a habit modeling module, respectively. For the content modeling module, we adopt the parallel co-attention mechanism to coherently model both image and text as well as the interaction between them; for the habit modeling module, we introduce an external memory unit to characterize the historicalmore »tagging habit of each user. The overall hashtag recommendations are generated on the basis of both the post features from the content modeling module and the habit influences from the habit modeling module. We evaluate the proposed approach on real Instagram data. The experimental results demonstrate that the proposed approach significantly outperforms the state-of-theart methods in terms of recommendation accuracy, and that both content modeling and habit modeling contribute significantly to the overall recommendation accuracy.« less
  6. Recommending suitable tags for online textual content is a key building block for better content organization and consumption. In this paper, we identify three pillars that impact the accuracy of tag recommendation: (1) sequential text modeling meaning that the intrinsic sequential ordering as well as different areas of text might have an important implication on the corresponding tag(s) , (2) tag correlation meaning that the tags for a certain piece of textual content are often semantically correlated with each other, and (3) content-tag overlapping meaning that the vocabularies of content and tags are overlapped. However, none of the existing methods consider all these three aspects, leading to a suboptimal tag recommendation. In this paper, we propose an integral model to encode all the three aspects in a coherent encoder-decoder framework. In particular, (1) the encoder models the semantics of the textual content via Recurrent Neural Networks with the attention mechanism, (2) the decoder tackles the tag correlation with a prediction path, and (3) a shared embedding layer and an indicator function across encoder-decoder address the content-tag overlapping. Experimental results on three realworld datasets demonstrate that the proposed method significantly outperforms the existing methods in terms of recommendation accuracy.
  7. In this paper, we study the team expansion problem in collaborative environments where people collaborate with each other in the form of a team, which might need to be expanded frequently by having additional team members during the course of the project. Intuitively, there are three factors as well as the interactions between them that have a profound impact on the performance of the expanded team, including (1) the task the team is performing, (2) the existing team members, and (3) the new candidate team member. However, the vast majority of the existing work either considers these factors separately, or even ignores some of these factors. In this paper, we propose a neural network based approach TECE to simultaneously model the interactions between the team task, the team members as well as the candidate team members. Experimental evaluations on real-world datasets demonstrate the effectiveness of the proposed approach.
  8. Network alignment and network completion are two fundamental cornerstones behind many high-impact graph mining applications. The state-of-the-arts have been addressing these tasks in parallel. In this paper, we argue that network alignment and completion are inherently complementary with each other, and hence propose to jointly address them so that the two tasks can benefit from each other. We formulate it from the optimization perspective, and propose an effective algorithm iNEAT to solve it. The proposed method offers two distinctive advantages. First (Alignment accuracy), our method benefits from higher-quality input networks while mitigates the effect of incorrectly inferred links introduced by the completion task itself. Second (Alignment efficiency), thanks to the low-rank structure of the complete networks and alignment matrix, the alignment can be significantly accelerated. The extensive experiments demonstrate the performance of our algorithm.
  9. This research focuses on accelerating the computational time of two base network algorithms (k-simple shortest paths and minimum spanning tree for a subset of nodes)---cornerstones behind a variety of network connectivity mining tasks---with the goal of rapidly finding networkpathways andtrees using a set of user-specific query nodes. To facilitate this process we utilize: (1) multi-threaded algorithm variations, (2) network re-use for subsequent queries and (3) a novel algorithm, Key Neighboring Vertices (KNV), to reduce the network search space. The proposed KNV algorithm serves a dual purpose: (a) to reduce the computation time for algorithmic analysis and (b) to identify key vertices in the network (\textit ). Empirical results indicate this combination of techniques significantly improves the baseline performance of both algorithms. We have also developed a web platform utilizing the proposed network algorithms to enable researchers and practitioners to both visualize and interact with their datasets (PathFinder: