skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is the Whole Greater Than the Sum of Its Parts?
The PART-WHOLE relationship routinely finds itself in many disciplines, ranging from collaborative teams, crowdsourcing, autonomous systems to networked systems. From the algorithmic perspective, the existing work has primarily focused on predicting the outcomes of the whole and parts, by either separate models or linear joint models, which assume the outcome of the parts has a linear and independent effect on the outcome of the whole. In this paper, we propose a joint predictive method named PAROLE to simultaneously and mutually predict the part and whole outcomes. The proposed method offers two distinct advantages over the existing work. First (Model Generality), we formulate joint PART-WHOLE outcome prediction as a generic optimization problem, which is able to encode a variety of complex relationships between the outcome of the whole and parts, beyond the linear independence assumption. Second (Algorithm Efficacy), we propose an effective and efficient block coordinate descent algorithm, which is able to find the coordinate-wise optimum with a linear complexity in both time and space. Extensive empirical evaluations on real-world datasets demonstrate that the proposed PAROLE (1) leads to consistent prediction performance improvement by modeling the non-linear part-whole relationship as well as part-part interdependency, and (2) scales linearly in terms of the size of the training dataset.  more » « less
Award ID(s):
1651203 1947135
PAR ID:
10062447
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
KDD
Page Range / eLocation ID:
295 to 304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part-structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines. 
    more » « less
  2. Abstract We extend the Adaptive Antoulas-Anderson () algorithm to develop a data-driven modeling framework for linear systems with quadratic output (). Such systems are characterized by two transfer functions: one corresponding to the linear part of the output and another one to the quadratic part. We first establish the joint barycentric representations and the interpolation theory for the two transfer functions of systems. This analysis leads to the proposed algorithm. We show that by interpolating the transfer function values on a subset of samples together with imposing a least-squares minimization on the rest, we construct reliable data-driven models. Two numerical test cases illustrate the efficiency of the proposed method. 
    more » « less
  3. In this paper, we propose a stepwise forward selection algorithm for detecting the effects of a set of correlated exposures and their interactions on a health outcome of interest when the underlying relationship could potentially be nonlinear. Though the proposed method is very general, our application in this paper remains to be on analysis of multiple pollutants and their interactions. Simultaneous exposure to multiple environmental pollutants could affect human health in a multitude of complex ways. For understanding the health effects of multiple environmental exposures, it is often important to identify and estimate complex interactions among exposures. However, this issue becomes analytically challenging in the presence of potential nonlinearity in the outcome‐exposure response surface and a set of correlated exposures. Through simulation studies and analyses of test datasets that were simulated as a part of a data challenge in multipollutant modeling organized by the National Institute of Environmental Health Sciences (http://www.niehs.nih.gov/about/events/pastmtg/2015/statistical/), we illustrate the advantages of our proposed method in comparison with existing alternative approaches. A particular strength of our method is that it demonstrates very low false positives across empirical studies. Our method is also used to analyze a dataset that was released from the Health Outcomes and Measurement of the Environment Study as a benchmark beta‐tester dataset as a part of the same workshop. 
    more » « less
  4. Demidenko, Eugene (Ed.)
    When dealing with longitudinal data, linear mixed-effects models (LMMs) are often used by researchers. However, LMMs are not always the most adequate models, especially if we expect a nonlinear relationship between the outcome and a continuous covariate. To allow for more flexibility, we propose the use of a semiparametric mixed-effects model to evaluate the overall treatment effect on the hemodynamic responses during bone graft healing and build a prediction model for the healing process. The model relies on a closed-form expectation–maximization algorithm, where the unknown nonlinear function is estimated using a Lasso-type procedure. Using this model, we were able to estimate the effect of time for individual mice in each group in a nonparametric fashion and the effect of the treatment while accounting for correlation between observations due to the repeated measurements. The treatment effect was found to be statistically significant, with the autograft group having higher total hemoglobin concentration than the allograft group. 
    more » « less
  5. We propose a prognostic machine learning (ML) framework to support the behavioural outcome prediction for cancer survivors. Specifically, our contributions are four-fold: (1) devise a data-driven, clinical domain guided pipeline to select the best set of predictors among cancer treatments, chronic health conditions, and socio-environmental factors to perform behavioural outcome predictions; (2) use the state-of-the-art two-tier ensemble-based technique to select the best set of predictors for the downstream ML regressor constructions; (3) develop a StackNet Regressor Architecture (SRA) algorithm, i.e., an intelligent meta-modeling algorithm, to dynamically and automatically build an optimized multilayer ensemble-based RA from a given set of ML regressors to predict long-term behavioural outcomes; and (4) conduct a preliminarily experimental case study on our existing study data (i.e., 207 cancer survivors who suffered from either Osteogenic Sarcoma, Soft Tissue Sarcomas, or Acute Lymphoblastic Leukemia before the age of 18) collected by our investigators in a public hospital in Hong Kong. In this pilot study, we demonstrate that our approach outperforms the traditional statistical and computation methods, including Linear and non-Linear ML regressors. 
    more » « less