skip to main content


Title: Is the Whole Greater Than the Sum of Its Parts?
The PART-WHOLE relationship routinely finds itself in many disciplines, ranging from collaborative teams, crowdsourcing, autonomous systems to networked systems. From the algorithmic perspective, the existing work has primarily focused on predicting the outcomes of the whole and parts, by either separate models or linear joint models, which assume the outcome of the parts has a linear and independent effect on the outcome of the whole. In this paper, we propose a joint predictive method named PAROLE to simultaneously and mutually predict the part and whole outcomes. The proposed method offers two distinct advantages over the existing work. First (Model Generality), we formulate joint PART-WHOLE outcome prediction as a generic optimization problem, which is able to encode a variety of complex relationships between the outcome of the whole and parts, beyond the linear independence assumption. Second (Algorithm Efficacy), we propose an effective and efficient block coordinate descent algorithm, which is able to find the coordinate-wise optimum with a linear complexity in both time and space. Extensive empirical evaluations on real-world datasets demonstrate that the proposed PAROLE (1) leads to consistent prediction performance improvement by modeling the non-linear part-whole relationship as well as part-part interdependency, and (2) scales linearly in terms of the size of the training dataset.  more » « less
Award ID(s):
1651203 1947135
NSF-PAR ID:
10062447
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
KDD
Page Range / eLocation ID:
295 to 304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a stepwise forward selection algorithm for detecting the effects of a set of correlated exposures and their interactions on a health outcome of interest when the underlying relationship could potentially be nonlinear. Though the proposed method is very general, our application in this paper remains to be on analysis of multiple pollutants and their interactions. Simultaneous exposure to multiple environmental pollutants could affect human health in a multitude of complex ways. For understanding the health effects of multiple environmental exposures, it is often important to identify and estimate complex interactions among exposures. However, this issue becomes analytically challenging in the presence of potential nonlinearity in the outcome‐exposure response surface and a set of correlated exposures. Through simulation studies and analyses of test datasets that were simulated as a part of a data challenge in multipollutant modeling organized by the National Institute of Environmental Health Sciences (http://www.niehs.nih.gov/about/events/pastmtg/2015/statistical/), we illustrate the advantages of our proposed method in comparison with existing alternative approaches. A particular strength of our method is that it demonstrates very low false positives across empirical studies. Our method is also used to analyze a dataset that was released from the Health Outcomes and Measurement of the Environment Study as a benchmark beta‐tester dataset as a part of the same workshop.

     
    more » « less
  2. Network embedding has become the cornerstone of a variety of mining tasks, such as classification, link prediction, clustering, anomaly detection and many more, thanks to its superior ability to encode the intrinsic network characteristics in a compact low-dimensional space. Most of the existing methods focus on a single network and/or a single resolution, which generate embeddings of different network objects (node/subgraph/network) from different networks separately. A fundamental limitation with such methods is that the intrinsic relationship across different networks (e.g., two networks share same or similar subgraphs) and that across different resolutions (e.g., the node-subgraph membership) are ignored, resulting in disparate embeddings. Consequentially, it leads to sub-optimal performance or even becomes inapplicable for some downstream mining tasks (e.g., role classification, network alignment. etc.). In this paper, we propose a unified framework MrMine to learn the representations of objects from multiple networks at three complementary resolutions (i.e., network, subgraph and node) simultaneously. The key idea is to construct the cross-resolution cross-network context for each object. The proposed method bears two distinctive features. First, it enables and/or boosts various multi-network downstream mining tasks by having embeddings at different resolutions from different networks in the same embedding space. Second, Our method is efficient and scalable, with a O(nlog(n)) time complexity for the base algorithm and a linear time complexity w.r.t. the number of nodes and edges of input networks for the accelerated version. Extensive experiments on real-world data show that our methods (1) are able to enable and enhance a variety of multi-network mining tasks, and (2) scale up to million-node networks. 
    more » « less
  3. Abstract

    Interacting particle systems play a key role in science and engineering. Access to the governing particle interaction law is fundamental for a complete understanding of such systems. However, the inherent system complexity keeps the particle interaction hidden in many cases. Machine learning methods have the potential to learn the behavior of interacting particle systems by combining experiments with data analysis methods. However, most existing algorithms focus on learning the kinetics at the particle level. Learning pairwise interaction, e.g., pairwise force or pairwise potential energy, remains an open challenge. Here, we propose an algorithm that adapts the Graph Networks framework, which contains an edge part to learn the pairwise interaction and a node part to model the dynamics at particle level. Different from existing approaches that use neural networks in both parts, we design a deterministic operator in the node part that allows to precisely infer the pairwise interactions that are consistent with underlying physical laws by only being trained to predict the particle acceleration. We test the proposed methodology on multiple datasets and demonstrate that it achieves superior performance in inferring correctly the pairwise interactions while also being consistent with the underlying physics on all the datasets. While the previously proposed approaches are able to be applied as simulators, they fail to infer physically consistent particle interactions that satisfy Newton’s laws. Moreover, the proposed physics-induced graph network for particle interaction also outperforms the other baseline models in terms of generalization ability to larger systems and robustness to significant levels of noise. The developed methodology can support a better understanding and discovery of the underlying particle interaction laws, and hence, guide the design of materials with targeted properties.

     
    more » « less
  4. null (Ed.)
    Deep Neural Networks (DNNs) are becoming an integral part of most software systems. Previous work has shown that DNNs have bugs. Unfortunately, existing debugging techniques don't support localizing DNN bugs because of the lack of understanding of model behaviors. The entire DNN model appears as a black box. To address these problems, we propose an approach and a tool that automatically determines whether the model is buggy or not, and identifies the root causes for DNN errors. Our key insight is that historic trends in values propagated between layers can be analyzed to identify faults, and also localize faults. To that end, we first enable dynamic analysis of deep learning applications: by converting it into an imperative representation and alternatively using a callback mechanism. Both mechanisms allows us to insert probes that enable dynamic analysis over the traces produced by the DNN while it is being trained on the training data. We then conduct dynamic analysis over the traces to identify the faulty layer or hyperparameter that causes the error. We propose an algorithm for identifying root causes by capturing any numerical error and monitoring the model during training and finding the relevance of every layer/parameter on the DNN outcome. We have collected a benchmark containing 40 buggy models and patches that contain real errors in deep learning applications from Stack Overflow and GitHub. Our benchmark can be used to evaluate automated debugging tools and repair techniques. We have evaluated our approach using this DNN bug-and-patch benchmark, and the results showed that our approach is much more effective than the existing debugging approach used in the state-of-the-practice Keras library. For 34/40 cases, our approach was able to detect faults whereas the best debugging approach provided by Keras detected 32/40 faults. Our approach was able to localize 21/40 bugs whereas Keras did not localize any faults. 
    more » « less
  5. null (Ed.)
    We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part-structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines. 
    more » « less