skip to main content

Title: The Distributed System of Governance in Engineering Education: A Report on Initial Findings
Unlike medicine, the engineering profession establishes new standards for engineering education through a distributed system of governance that mirrors the distributed structure of the profession. In this paper, we present our preliminary findings resulting from early data collected through an NSF-sponsored study of this system. This qualitative study is multi-site and multiscale in its design, and will eventually draw on interviews with faculty and administrators, at different rank, from at least two-dozen different colleges and universities as well as engineering professional organizations. Our interview data is complemented by content analysis of archival documents and published studies, reports, and statements. This paper is designed to introduce our research questions and begin a conversation among engineering educators about how we govern our own educational system. The trends and observations noted in this paper are abstracted from our earliest results, and are described only in general terms. Future papers will explore each of our research questions more fully, taking into account more detailed data.
Authors:
; ; ; ;
Award ID(s):
1745922
Publication Date:
NSF-PAR ID:
10062648
Journal Name:
ASEE Annual Conference proceedings
Page Range or eLocation-ID:
22890
ISSN:
1524-4644
Sponsoring Org:
National Science Foundation
More Like this
  1. Unlike medicine, the engineering profession establishes new standards for engineering education through a distributed system of governance that mirrors the distributed structure of the profession. In this paper, we present our initial findings and data resulting from an NSF-sponsored study of this phenomenon. This qualitative study is multi-site and multi-scale in its design, and draws on interviews with faculty and administrators, of different rank, from at least two-dozen different colleges and universities as well as engineering professional organizations. We also complement our interview data with content analysis of archival documents and published studies, reports, and statements. The research questions that define our study consist of understanding and documenting the a) the basic structure of the engineering profession and U.S. higher education as it impacts engineering education reform initiatives; b) the historically evolving body of practice that has governed these reforms; c) the ways in which the epistemic habits of engineers, such as an emphasis on quantification and measurement, contributes to reform agendas and outcomes; d) the extent to which engineering educators are cognizant of the social and historical contexts within which they operate, and how their articulations of this context come to define dominant directions in reform; e) the processesmore »through which destabilization and closure occurs with regards to shared standards in engineering education; f) more specifically, the mechanisms through with engineering education reform agendas are coordinated across different institutions; f) and likewise, common mechanisms through which such coordination is frustrated, undermined, and sometimes reversed, especially as a consequence of competing agendas that arise out of institutional diversity and other identifiable causes. By the time of our annual meeting, we expect to be able to offer initial insights into each of our research questions. This paper will offer a preliminary presentation of our findings, including the presentation of illustrative evidence from our data set. The study is designed to provide all engineering educators with a deeper understanding of the context in which they operate, with the aim of producing more effective, inclusive, accommodating, and enduring solutions to the challenges of engineering education. (Note: A more speculative paper, exploring the theoretical and philosophical dimensions of governance in engineering education without a specific emphasis on our research questions and data set, has also been submitted separately to the TELPhE Division. The two papers will be different, presented by different lead authors, and complement one another.)« less
  2. Unlike medicine, the engineering profession establishes new standards for engineering education through a distributed system of governance that mirrors the distributed structure of the profession. In this paper, we present our initial findings and data resulting from an NSF-sponsored study of this phenomenon. This qualitative study is multi-site and multi-scale in its design, and draws on interviews with faculty and administrators, of different rank, from at least two-dozen different colleges and universities as well as engineering professional organizations. We also complement our interview data with content analysis of archival documents and published studies, reports, and statements. The research questions that define our study consist of understanding and documenting the a) the basic structure of the engineering profession and U.S. higher education as it impacts engineering education reform initiatives; b) the historically evolving body of practice that has governed these reforms; c) the ways in which the epistemic habits of engineers, such as an emphasis on quantification and measurement, contributes to reform agendas and outcomes; d) the extent to which engineering educators are cognizant of the social and historical contexts within which they operate, and how their articulations of this context come to define dominant directions in reform; e) the processesmore »through which destabilization and closure occurs with regards to shared standards in engineering education; f) more specifically, the mechanisms through with engineering education reform agendas are coordinated across different institutions; f) and likewise, common mechanisms through which such coordination is frustrated, undermined, and sometimes reversed, especially as a consequence of competing agendas that arise out of institutional diversity and other identifiable causes. By the time of our annual meeting, we expect to be able to offer initial insights into each of our research questions. This paper will offer a preliminary presentation of our findings, including the presentation of illustrative evidence from our data set. The study is designed to provide all engineering educators with a deeper understanding of the context in which they operate, with the aim of producing more effective, inclusive, accommodating, and enduring solutions to the challenges of engineering education. (Note: A more speculative paper, exploring the theoretical and philosophical dimensions of governance in engineering education without a specific emphasis on our research questions and data set, has also been submitted separately to the TELPhE Division. The two papers will be different, presented by different lead authors, and complement one another.)« less
  3. Unlike medicine, the engineering profession establishes new standards for engineering education through a distributed system of governance that mirrors the distributed structure of the profession. In this paper, we present our preliminary findings resulting from early data collected through an NSF-sponsored study of this system. This qualitative study is multi-site and multiscale in its design, and will eventually draw on interviews with faculty and administrators, at different rank, from at least two-dozen different colleges and universities as well as engineering professional organizations. Our interview data is complemented by content analysis of archival documents and published studies, reports, and statements. This paper is designed to introduce our research questions and begin a conversation among engineering educators about how we govern our own educational system. The trends and observations noted in this paper are abstracted from our earliest results, and are described only in general terms. Future papers will explore each of our research questions more fully, taking into account more detailed data.
  4. Engineers are called to play an important role in addressing the complex problems of our global society, such as climate change and global health care. In order to adequately address these complex problems, engineers must be able to identify and incorporate into their decision making relevant aspects of systems in which their work is contextualized, a skill often referred to as systems thinking. However, within engineering, research on systems thinking tends to emphasize the ability to recognize potentially relevant constituent elements and parts of an engineering problem, rather than how these constituent elements and parts are embedded in broader economic, sociocultural, and temporal contexts and how all of these must inform decision making about problems and solutions. Additionally, some elements of systems thinking, such as an awareness of a particular sociocultural context or the coordination of work among members of a cross-disciplinary team, are not always recognized as core engineering skills, which alienates those whose strengths and passions are related to, for example, engineering systems that consider and impact social change. Studies show that women and minorities, groups underrepresented within engineering, are drawn to engineering in part for its potential to address important social issues. Emphasizing the importance of systemsmore »thinking and developing a more comprehensive definition of systems thinking that includes both constituent parts and contextual elements of a system will help students recognize the relevance and value of these other elements of engineering work and support full participation in engineering by a diverse group of students. We provide an overview of our study, in which we are examining systems thinking across a range of expertise to develop a scenario-based assessment tool that educators and researchers can use to evaluate engineering students’ systems thinking competence. Consistent with the aforementioned need to define and study systems thinking in a comprehensive, inclusive manner, we begin with a definition of systems thinking as a holistic approach to problem solving in which linkages and interactions of the immediate work with constituent parts, the larger sociocultural context, and potential impacts over time are identified and incorporated into decision making. In our study, we seek to address two key questions: 1) How do engineers of different levels of education and experience approach problems that require systems thinking? and 2) How do different types of life, educational, and work experiences relate to individuals’ demonstrated level of expertise in solving systems thinking problems? Our study is comprised of three phases. The first two phases include a semi-structured interview with engineering students and professionals about their experiences solving a problem requiring systems thinking and a think-aloud interview in which participants are asked to talk through how they would approach a given engineering scenario and later reflect on the experiences that inform their thinking. Data from these two phases will be used to develop a written assessment tool, which we will test by administering the written instrument to undergraduate and graduate engineering students in our third study phase. Our paper describes our study design and framing and includes preliminary findings from the first phase of our study.« less
  5. An ongoing focus of engineering education research is on increasing the number of women in engineering. Previous studies have primarily focused on examining why the number of women enrolled in engineering colleges remains persistently low. In doing so, while we have gained better understanding of the challenges and barriers that women encountered and factors that contribute to such negative experiences, it also, as some scholars have pointed out, has cast a deficit frame on such matters. In this study, we take on a positive stand where we focus on women undergraduate students who not only “stay” but also succeed in engineering programs (that is, our definition of thriving) as a way to locate the personal and institutional factors that facilitate such positive outcomes. Our initial pilot study involved two female engineering undergraduate students at an R1 university. Each student was interviewed three times. While each of the interviews in the sequence had a slightly different focus, the overall goal was to understand the women’s autobiographic and educational experiences leading to their paths to engineering and participation in the engineering project teams. The inductive thematic analysis revealed several primary findings which subsequently played a major role in developing a codebook formore »the current study. Building upon what is learned from the pilot study, the current study uses a layered multi-case study design involving three institutions: a public/private Ivy League and statutory land-grand research university in the Northeast, a public land-grant research university in the Midwest, and a public land-grant research university in the Southwest which is also designated as MSI/HSI. In addition to the interview method, data collection also contains documents and artifacts. For this paper, we zone in onto the data collected in the first interviews, known as the “life history” where we mainly learn about the women undergraduate participants’ personal-familial contexts that contribute to their entry to majoring in engineering as identified by the women themselves. Preliminary findings indicate that: (1) our participants tend to have supportive families; (2) while all experienced gender biases, not everyone has formed a critical consciousness of sexism; and (3) being able to actually engage by “doing” something and creating a product is key to the women’s finding joy in engineering and associating themself with the field/profession. It is important to note that the second interviews, which focus on the educational journey of the participants in relation to engineering identity development and project team experiences, are underway. The ultimate goal for the study is to develop a theoretical framework speaking to a multifaceted model of forces (micro as autobiographic, macro as institutional, and in-between or middle-level as team-based) in shaping women’s entry and advance in engineering programs. This framework will recognize the variations in institutional type, resource availability, and structural and cultural characteristics and traditions in teams. It will also use such differences to show possibilities of more versatile ways for diversifying pathways for women and other minoritized groups to thrive in engineering.« less