skip to main content

The analysis of membranous extracellular vesicles, such as exosomes vesicles (EV) opens a new direction for the rapid disease diagnosis because EVs can carry molecular constituents of their originating cells. Secreted by mammalian cells, the size of most membrane-bound phospholipid EVs ranges from 50 to 150 nm in diameter. Recent studies have demonstrated the potential of using EVs for cancer diagnosis and treatment monitoring. To diagnose infectious diseases using EVs, the ability to discriminate EVs from host cells and parasites is key. Here, we report a rapid EV analysis assay that can discriminate EVs based on a host-specific transmembrane protein (CD63 antigen) using a label-free optical biosensor.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Hilton Head Workshop 2018: A Solid-State Sensors, Actuators and Microsystems Workshop, June 3-7, 2018, Hilton Head Island, SC, USA.
Page Range or eLocation-ID:
303 - 305
Sponsoring Org:
National Science Foundation
More Like this
  1. Torrecilhas, Ana Claudia (Ed.)
    Adenovirus (Ad) is a major causal agent of acute respiratory infections. However, they are a powerful delivery system for gene therapy and vaccines. Some Ad serotypes antagonize the immune system leading to meningitis, conjunctivitis, gastroenteritis, and/or acute hemorrhagic cystitis. Studies have shown that the release of small, membrane-derived extracellular vesicles (EVs) may offer a mechanism by which viruses can enter cells via receptor-independent entry and how they influence disease pathogenesis and/or host protection considering their existence in almost all bodily fluids. We proposed that Ad3 could alter EV biogenesis, composition, and trafficking and may stimulate various immune responses in vitro.more »In the present study, we evaluated the impact of in vitro infection with Ad3 vector on EV biogenesis and composition in the human adenocarcinoma lung epithelial cell line A549. Cells were infected in an exosome-free media at different multiplicity of infections (MOIs) and time points. The cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and fluorometric calcein-AM. EVs were isolated via ultracentrifugation. Isolated EV proteins were quantified and evaluated via nanoparticle tracking, transmission electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunoblotting assays. The cell viability significantly decreased with an increase in MOI and incubation time. A significant increase in particle mean sizes, concentrations, and total EV protein content was detected at higher MOIs when compared to uninfected cells (control group). A549 cell-derived EVs revealed the presence of TSG101, tetraspanins CD9 and CD63, and heat shock proteins 70 and 100 with significantly elevated levels of Rab5, 7, and 35 at higher MOIs (300, 750, and 1500) when compared to the controls. Our findings suggested Ad3 could modulate EV biogenesis, composition, and trafficking which could impact infection pathogenesis and disease progression. This study might suggest EVs could be diagnostic and therapeutic advancement to Ad infections and other related viral infections. However, further investigation is warranted to explore the underlying mechanism(s).« less
  2. Extracellular vesicles (EVs) have gained considerable attention as vital circulating biomarkers since their structure and composition resemble the originating cells. The investigation of EVs’ biochemical and biophysical properties is of great importance to map them to their parental cells and to better understand their functionalities. In this study, a novel frequency-dependent impedance measurement system has been developed to characterize EVs based on their unique dielectric properties. The system is composed of an insulator-based dielectrophoretic (iDEP) device to entrap and immobilize a cluster of vesicles followed by utilizing electrical impedance spectroscopy (EIS) to measure their impedance at a wide frequency spectrum,more »aiming to analyze both their membrane and cytosolic charge-dependent contents. The EIS was initially utilized to detect nano-size vesicles with different biochemical compositions, including liposomes synthesized with different lipid compositions, as well as EVs and lipoproteins with similar biophysical properties but dissimilar biochemical properties. Moreover, EVs derived from the same parental cells but treated with different culture conditions were characterized to investigate the correlation of impedance changes with biochemical properties and functionality in terms of pro-inflammatory responses. The system also showed the ability to discriminate between EVs derived from different cellular origins as well as among size-sorted EVs harbored from the same cellular origin. This proof-of-concept approach is the first step towards utilizing EIS as a label-free, non-invasive, and rapid sensor for detection and characterization of pathogenic EVs and other nanovesicles in the future.« less
  3. Extracellular vesicles (EVs) contribute to a variety of signaling processes and the overall physiological and pathological states of stem cells and tissues. Human induced pluripotent stem cells (hiPSCs) have unique characteristics that can mimic embryonic tissue development. There is growing interest in the use of EVs derived from hiPSCs as therapeutics, biomarkers, and drug delivery vehicles. However, little is known about the characteristics of EVs secreted by hiPSCs and paracrine signaling during tissue morphogenesis and lineage specification. Methods: In this study, the physical and biological properties of EVs isolated from hiPSC-derived neural progenitors (ectoderm), hiPSC-derived cardiac cells (mesoderm), and themore »undifferentiated hiPSCs (healthy iPSK3 and Alzheimer’s-associated SY-UBH lines) were analyzed. Results: Nanoparticle tracking analysis and electron microscopy results indicate that hiPSC-derived EVs have an average size of 100–250 nm. Immunoblot analyses confirmed the enrichment of exosomal markers Alix, CD63, TSG101, and Hsc70 in the purified EV preparations. MicroRNAs including miR-133, miR-155, miR-221, and miR-34a were differently expressed in the EVs isolated from distinct hiPSC lineages. Treatment of cortical spheroids with hiPSC-EVs in vitro resulted in enhanced cell proliferation (indicated by BrdU+ cells) and axonal growth (indicated by β-tubulin III staining). Furthermore, hiPSC-derived EVs exhibited neural protective abilities in Aβ42 oligomer-treated cultures, enhancing cell viability and reducing oxidative stress. Our results demonstrate that the paracrine signaling provided by tissue context-dependent EVs derived from hiPSCs elicit distinct responses to impact the physiological state of cortical spheroids. Overall, this study advances our understanding of cell‒cell communication in the stem cell microenvironment and provides possible therapeutic options for treating neural degeneration.« less
  4. Membrane-bound vesicles that are released from cells are increasingly being studied as a medium of intercellular communication, as these act to shuttle functional proteins, such as lipids, DNA, rRNA, and miRNA, between cells during essential physiological processes. Extracellular vesicles (EVs), most commonly exosomes, are consistently produced by virus-infected cells, and they play crucial roles in mediating communication between infected and uninfected cells. Notably, pathophysiological roles for EVs have been established in various viral infections, including human immune deficiency virus (HIV), coronavirus (CoV), and human adenovirus (HAdv). Retroviruses, such as HIV, modulate the production and composition of EVs, and critically, thesemore »viruses can exploit EV formation, secretion, and release pathways to promote infection, transmission, and intercellular spread. Consequently, EV production has been investigated as a potential tool for the development of improved viral infection diagnostics and therapeutics. This review will summarize our present knowledge of EV–virus relationships, focusing on their known roles in pathophysiological pathways, immunomodulatory mechanisms, and utility for biomarker discovery. This review will also discuss the potential for EVs to be exploited as diagnostic and treatment tools for viral infection.« less
  5. All cells produce extracellular vesicles (EVs). These biological packages contain complex mixtures of molecular cargo and have a variety of functions, including interkingdom communication. Recent discoveries highlight the roles microbial EVs may play in the environment with respect to interactions with plants as well as nutrient cycling. These studies have also identified molecules present within EVs and associated with EV surfaces that contribute to these functions. In parallel, studies of engineered nanomaterials have developed methods to track and model small particle behavior in complex systems and measure the relative importance of various surface features on transport and function. While studiesmore »of EV behavior in complex environmental conditions have not yet employed transdisciplinary approaches, it is increasingly clear that expertise from disparate fields will be critical to understand the role of EVs in these systems. Here, we outline how the convergence of biology, soil geochemistry, and colloid science can both develop and address questions surrounding the basic principles governing EV-mediated interkingdom interactions.« less