Abstract Reactive rhenium(III) nitride complexes could result from filling Re─N π* orbitals, but such complexes lie beyond the “nitrido wall” and are rare due to their instability. Here, we describe a method for bypassing the nitrido wall by incorporating a redox‐active isocyanide supporting ligand, which accommodates two electrons as shown by crystallographic, spectroscopic, and computational studies. These electrons can be returned to the metal during its facile reaction with CO to form a cyanate complex, demonstrating the nucleophilic reactivity of the nitride. Thus, assistance by the isocyanide enables an N2‐derived rhenium nitride to engage in N─C bond forming reactivity.
more »
« less
A Low‐Valent Molybdenum Nitride Complex: Reduction Promotes Carbonylation Chemistry
Abstract Toward nitrogen functionalization, reactive terminal transition metal nitrides with high d‐electron counts are of interest. A series of terminal MoIVnitride complexes were prepared within the context of exploring nitride/carbonyl coupling to cyanate. Reduction affords the first MoIInitrido complex, an early metal nitride with four valence d‐electrons. The binding mode of the para‐terphenyl diphosphine ancillary ligand changes to stabilize an electronic configuration with a high electron count and a formal M−N bond order of three. Even with an intact Mo≡N bond, this low‐valent nitrido complex proves to be highly reactive, readily undergoing N‐atom transfer upon addition of CO, releasing cyanate anion.
more »
« less
- Award ID(s):
- 1151918
- PAR ID:
- 10063019
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 57
- Issue:
- 31
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 9670-9674
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO−, to the NbIVcomplex [(PNP)NbCl2(NtBuAr)] (1) (PNP=N[2‐PiPr2‐4‐methylphenyl]2−; Ar=3,5‐Me2C6H3) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(NtBuAr)] (2). Reduction of2with CoCp*2cleaves the P−P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(NtBuAr)] (3). Theoretical studies have been used to understand both the coupling of the P‐atom and the reductive cleavage of the P−P bond. Reaction of3with a two‐electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P−P coupled ligand, namely [(PNPP)Nb=S(NtBuAr)] (4).more » « less
-
The reaction of a terminal Mo(II) nitride with a U(III) complex yields an heterodimetallic U-Mo nitride which is the first example of a transition metal-capped uranium nitride. The nitride is triply bonded to U(V) and singly bonded to Mo(0) and supports a U-Mo interaction. This compound shows reactivity toward CO oxidation.more » « less
-
The thioether-diphosphine pincer-ligated molybdenum complex, (PSP)MoCl3 (1-Cl3, PSP = 4,5-bis(diisopropylphosphino)-2,7-di-tert-butyl-9,9-dimethyl-9H-thioxanthene) has been synthesized as a catalyst-precursor for N2 reduction catalysis, with a focus on an integrated experimental/computational mechanistic investigation. The (PSP)Mo unit is isoelectronic with the (PNP)Mo (PNP = 2,6-bis(di-t-butylphosphinomethyl)pyridine) fragment found in the family of catalysts for the reduction of N2 to NH3 first reported in 2011 by Nishibayashi and co-workers. Under an atmosphere of N2 the reaction of 1-Cl3 with three reducing equivalents yields the dinuclear penta-dinitrogen Mo complex [(PSP)Mo(N2)2](-N2), 2. Electrochemical studies reveal that 1-Cl3 is significantly more easily reduced than (PNP)MoCl3 (with a potential ca. 0.4 eV less negative). The bridging-nitrogen complex 2 shows no indication of undergoing N2 cleavage to Mo nitride complexes. The reaction of 1-Cl3 with only two reducing equivalents, however, under N2 atmosphere and in the presence of iodide, affords the product of N2 cleavage, the nitride complex (PSP)Mo(N)(I). DFT calculations implicate another N2-bridged complex, [(PSP)Mo(I)]2(N2), as a viable intermediate in facile N2 cleavage to yield (PSP)Mo(N)(I). Conversion of the nitride ligand to NH3 has been studied. If considering sequential addition of H atoms to the nitride, formation of the first N-H bond is by far the thermodynamically least favorable of the three N-H bond formation steps. The first N-H bond was formed by reaction of (PSP)Mo(N)(I) with [LutH]Cl, where coordination of Cl– to Mo plays an essential role. Computations suggest that a second protonation, followed by a rapid and very favorable one-electron reduction, and then a third protonation, furnishes ammonia. In agreement with calculations, ammonia can be generated using either mild H-atom transfer reagents or mild reductants/acids. This comprehensive analysis of the elementary steps of ammonia synthesis and the role of the central pincer donor and halide association provides guidance for future catalyst designs.more » « less
-
Abstract A metal/ligand cooperative approach to the reduction of small molecules by metal silylene complexes (R2Si=M) is demonstrated, whereby silicon activates the incoming substrate and mediates net two‐electron transformations by one‐electron redox processes at two metal centers. An appropriately tuned cationic pincer cobalt(I) complex, featuring a central silylene donor, reacts with CO2to afford a bimetallic siloxane, featuring two CoIIcenters, with liberation of CO; reaction of the silylene complex with ethylene yields a similar bimetallic product with an ethylene bridge. Experimental and computational studies suggest a plausible mechanism proceeding by [2+2] cycloaddition to the silylene complex, which is quite sensitive to the steric environment. The CoII/CoIIproducts are reactive to oxidation and reduction. Taken together, these findings demonstrate a strategy for metal/ligand cooperative small‐molecule activation that is well‐suited to 3dmetals.more » « less
An official website of the United States government
