skip to main content


Title: A Hybrid Desktop Process for Integrated Deposition and Low-cost, In-situ Sintering of Conductive Silver Nanoparticles
Microscale continuous thin films or patterned conductive structures find applications in thin film electronics, energy generation and functional sensor systems. An emerging alternative to conventional vacuum based deposition of such structures is the additive deposition and sintering of conductive nanoparticles, to enable low temperature, low-cost and low energy fabrication. While significant work has gone into additive deposition of nanoparticles the realization of the above potential needs nanoparticle sintering methods that are equally low-cost, in-situ, ambient condition and desktop-sized in nature. This work demonstrates the integration of non-laser based, low-cost and small footprint optical energy sources for ambient condition sintering of conductive nanoparticles, with wide-area aerosol jet based additive printing of nanoparticle inks. The nanoparticle sintering is characterized by quantifying the sintering temperatures, sintered material conductivity, crystallinity, optical properties, thickness and microscale morphology in terms of the sintering parameters. It is shown that such optical sintering sources can be further integrated with inkjet printing as well, and the implications on new paradigms for hybrid additive-  more » « less
Award ID(s):
1809289
NSF-PAR ID:
10063286
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
World Congress on Micro and Nano Manufacturing
Page Range / eLocation ID:
4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis. 
    more » « less
  2. Abstract

    Metal patterning via additive manufacturing has been phasing‐in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal‐patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one‐step gold printing technique based on anion‐assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 107S m−1) under ambient conditions without post‐annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Clions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD‐printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical‐deposition‐based metal patterning in flexible electronic manufacturing.

     
    more » « less
  3. Abstract

    Direct printing of functional materials, structures, and devices on various platforms such as flexible to rigid substrates is of interest for applications ranging from electronics to energy and sensing to biomedical devices. Current additive manufacturing (AM) and printing processes are either limited by the available sources of functional materials or require to be in the form of precisely designed inks. Here, a novel laser‐based additive nanomanufacturing (ANM) system capable of in situ and on‐demand generations of nanoparticles that can serve as nanoscale building blocks for real‐time sintering and dry printing a variety of multifunctional materials and patterns at atmospheric pressure and room temperature is reported. The ability to print different functional materials on various rigid and flexible platforms is shown. This nonequilibrium process involves pulsed laser ablation of targets and in situ formation of pure amorphous nanoparticles’ stream that are guided through a nozzle onto the surface of the substrate, where they are sintered/crystallized in real‐time. Further, the process–structure relationship of the printed materials from nanoscale to microscale is shown. This new ANM concept opens up an opportunity for printing advanced functional materials and devices on rigid and flexible substrates that can be employed both on the earth and in space.

     
    more » « less
  4. Sintering of nanoparticles deposited onto rigid or flexible substrate is required for many devices that use continuous and patterned thin films. An emerging need in this area is to perform nanoparticle sintering under ambient conditions, at high speeds, and with throughput that is compatible with high speed nanoparticle deposition techniques. Intense Pulsed Light sintering (IPL) uses a high energy, broad area and broad spectrum beam of xenon lamp light to sinter metallic and non-metallic nanoparticles. The capability of IPL to meet the above needs has been demonstrated. This paper experimentally examines temperature evolution and densification during IPL. It is shown, for the first time, that temperature rise and densification in IPL are related to each other. A coupled optical-thermal-sintering model on the nanoscale is developed, to understand this phenomenon. This model is used to show that the change in nanoscale shape of the nanoparticle ensemble due to sintering, reduces the optically induced heating as the densification proceeds, which provides a better explanation of experimental observations as compared to current models of IPL. The implications of this new understanding on the performance of IPL are also discussed. 
    more » « less
  5. Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance and low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratio of active materials. Catalysts such as MnO 2 and Co dopants were employed to accelerate the sulfur conversion reaction during the charge and discharge process. 5 However, catalysts based on transition metals suffer from poor electronic conductivity. Other catalysts such as transition metal dopants are also limited due to the increased process complexities. . In addition, the severe shuttle effects in Li-S batteries may lead to fast failures of the battery. Constructing a protection layer on the separator for limiting the transmission of soluble polysulfides is considered an effective way to eliminate the shuttle phenomenon. However, the soluble sulfides still can largely dissolve around the cathode side causing the sluggish reaction condition for sulfur conversion. 5 To mitigate the issues above, herein we demonstrate a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative vapor deposition (oCVD). Specifically, the electrode is strategically designed into a hierarchal hollow structure via stereolithography technique to increase sulfur usage. The active material concentration loaded to the battery cathode is controlled precisely during 3D printing by adjusting the number of printed layers. Owing to its freedom in geometry and structure, the suggested design is expected to improve the Li ions and electron transport rate considerably, and hence, the battery power density. The printed cathode is sintered at 700 °C at N 2 atmosphere to achieve carbonization of the cathode during which intrinsic carbon defects (e.g., pentagon carbon) as catalytic defect sites are in-situ generated on the cathode. The intrinsic carbon defects equipped with adequate electronic conductivity. The sintered 3D cathode is then transferred to the oCVD chamber for depositing a thin PEDOT layer as a protection layer to restrict dissolutions of sulfur compounds in the cathode. Density functional theory calculation reveals the electronic state variance between the structures with and without defects, the structure with defects demonstrates the higher kinetic condition for sulfur conversion. To further identify the favorable reaction dynamic process, the in-situ XRD is used to characterize the transformation between soluble and insoluble polysulfides, which is the main barrier in the charge and discharge process of Li-S batteries. The results show the oCVD coated 3D printed sulfur cathode exhibits a much higher kinetic process for sulfur conversion, which benefits from the highly tailored hierarchal hollow structure and the defects engineering on the cathode. Further, the oCVD coated 3D printed sulfur cathode also demonstrates higher stability during long cycling enabled by the oCVD PEDOT protection layer, which is verified by an absorption energy calculation of polysulfides at PEDOT. Such modeling and analysis help to elucidate the fundamental mechanisms that govern cathode performance and degradation in Li-S batteries. The current study also provides design strategies for the sulfur cathode as well as selection approaches to novel battery systems. References: Bhargav, A., (2020). Lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule 4 , 285-291. Chung, S.-H., (2018). Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials 28 , 1801188. Peng, H.-J.,(2017). Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Advanced Energy Materials 7 , 1700260. Chu, T., (2021). 3D printing‐enabled advanced electrode architecture design. Carbon Energy 3 , 424-439. Shi, Z., (2021). Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials 11 . Figure 1 
    more » « less