Intense Pulsed Light Sintering (IPL) uses pulsed, large-area, broad-spectrum visible light from a xenon lamp for rapid fusion of nanomaterials into films or patterns used in flexible sensors, solar cells, displays and other applications. Past work on the IPL of silver nanoparticles has shown that a self-damping coupling between densification and optical absorption governs the evolution of the deposited nanomaterial temperature during IPL. This work examines the influence of the nanomaterial shape distribution on this coupling and on the temperature evolution in IPL of silver nanowire–nanoparticle composite films. The film thickness, resistivity, micromorphology, crystallinity and optical properties are compared formore »
RAPID INTENSE PULSE LIGHT SINTERING OF COPPER SULPHIDE NANOPARTICLE FILMS
Copper sulphide (CuxS, x=1 to 2) is a metal chalcogenide semiconductor that exhibits useful optical and electrical properties due to the presence of copper vacancies. This makes CuxS thin films useful for a number of applications including infrared absorbing coatings, solar cells, thin-film electronics, and as a precursor for CZTS (Copper Zinc Tin Sulphide) thin films. Post-deposition sintering of CuxS nanoparticle films is a key process that affects the film properties and hence determines its operational characteristics in the above applications. Intense pulse light (IPL) sintering uses visible broad-spectrum xenon light to rapidly sinter nanoparticle films over large-areas, and is compatible with methods such as roll-to-roll deposition for large-area deposition of colloidal nanoparticle films and patterns. This paper experimentally examines the effect of IPL parameters on sintering of CuxS thin films. As-deposited and sintered films are compared in terms of their crystal structure, as well as optical and electrical properties, as a function of the IPL parameters.
- Award ID(s):
- 1809289
- Publication Date:
- NSF-PAR ID:
- 10063293
- Journal Name:
- 2017 12th International Manufacturing Science and Engineering Conference MSEC2017
- Page Range or eLocation-ID:
- 9
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microscale continuous thin films or patterned conductive structures find applications in thin film electronics, energy generation and functional sensor systems. An emerging alternative to conventional vacuum based deposition of such structures is the additive deposition and sintering of conductive nanoparticles, to enable low temperature, low-cost and low energy fabrication. While significant work has gone into additive deposition of nanoparticles the realization of the above potential needs nanoparticle sintering methods that are equally low-cost, in-situ, ambient condition and desktop-sized in nature. This work demonstrates the integration of non-laser based, low-cost and small footprint optical energy sources for ambient condition sintering ofmore »
-
Sintering of nanoparticles deposited onto rigid or flexible substrate is required for many devices that use continuous and patterned thin films. An emerging need in this area is to perform nanoparticle sintering under ambient conditions, at high speeds, and with throughput that is compatible with high speed nanoparticle deposition techniques. Intense Pulsed Light sintering (IPL) uses a high energy, broad area and broad spectrum beam of xenon lamp light to sinter metallic and non-metallic nanoparticles. The capability of IPL to meet the above needs has been demonstrated. This paper experimentally examines temperature evolution and densification during IPL. It is shown,more »
-
The organic metal halide perovskite material is capable of high throughput manufacturing via traditional deposition processes used in roll-to-roll, yet thermal annealing post deposition may require long ovens. We report rapid annealed perovskite thin films using intense pulsed light (IPL) to initiate a radiative thermal response that is enabled by an alkyl halide additive that collectively improves the performance of a device processed in an ambient environment from a baseline of 10 to 16.5% efficiency. Previous reports on CH 3 NH 3 PbI 3 perovskite films using IPL processing achieved functional devices in milli-second time scales and are promising formore »
-
During the last few decades, the interest over chalcopyrite and related photovoltaics has been growing due the outstanding structural and electrical properties of the thin-film Cu(In,Ga)Se2 photoabsorber. More recently, thin film deposition through solution processing has gained increasing attention from the industry, due to the potential low-cost and high-throughput production. To this end, the elimination of the selenization procedure in the synthesis of Cu(In,Ga)Se2 nanoparticles with following dispersion into ink formulations for printing/coating deposition processes are of high relevance. However, most of the reported syntheses procedures give access to tetragonal chalcopyrite Cu(In,Ga)Se2 nanoparticles, whereas methods to obtain other structures aremore »