skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planning with Critical Decision Points: Robots that Influence Humans to Infer Their Strategy
To enable sophisticated interactions between humans and robots in a shared environment, robots must infer the intentions and strategies of their human counterparts. This inference can provide a competitive edge to the robot or enhance human-robot collaboration by reducing the necessity for explicit communication about task decisions. In this work, we identify specific states within the shared environment, which we refer to as Critical Decision Points, where the actions of a human would be especially indicative of their high-level strategy. A robot can significantly reduce uncertainty regarding the human’s strategy by observing actions at these points. To demonstrate the practical value of Critical Decision Points, we propose a Receding Horizon Planning (RHP) approach for the robot to influence the movement of a human opponent in a competitive game of hide-and-seek in a partially observable setting. The human plays as the hider and the robot plays as the seeker. We show that the seeker can influence the hider to move towards Critical Decision Points, and this can facilitate a more accurate estimation of the hider’s strategy. In turn, this helps the seeker catch the hider faster than estimating the hider’s strategy whenever the hider is visible or when the seeker only optimizes for minimizing its distance to the hider.  more » « less
Award ID(s):
2106690
PAR ID:
10566594
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-7502-2
Page Range / eLocation ID:
777 to 782
Format(s):
Medium: X
Location:
Pasadena, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. As intelligent systems gain autonomy and capability, it becomes vital to ensure that their objectives match those of their human users; this is known as the value-alignment problem. In robotics, value alignment is key to the design of collaborative robots that can integrate into human workflows, successfully inferring and adapting to their users’ objectives as they go.We argue that a meaningful solution to value alignment must combine multi-agent decision theory with rich mathematical models of human cognition, enabling robots to tap into people’s natural collaborative capabilities. We present a solution to the cooperative inverse reinforcement learning (CIRL) dynamic game based on well-established cognitive models of decision making and theory of mind. The solution captures a key reciprocity relation: the human will not plan her actions in isolation, but rather reason pedagogically about how the robot might learn from them; the robot, in turn, can anticipate this and interpret the human’s actions pragmatically. To our knowledge, this work constitutes the first formal analysis of value alignment grounded in empirically validated cognitive models. 
    more » « less
  2. When independently trained or designed robots are deployed in a shared environment, their combined actions can lead to unintended negative side effects (NSEs). To ensure safe and efficient operation, robots must optimize task performance while minimizing the penalties associated with NSEs, balancing individual objectives with collective impact. We model the problem of mitigating NSEs in a cooperative multi-agent system as a bi-objective lexicographic decentralized Markov decision process. We assume independence of transitions and rewards with respect to the robots' tasks, but the joint NSE penalty creates a form of dependence in this setting. To improve scalability, the joint NSE penalty is decomposed into individual penalties for each robot using credit assignment, which facilitates decentralized policy computation. We empirically demonstrate, using mobile robots and in simulation, the effectiveness and scalability of our approach in mitigating NSEs. Code: \url{https://tinyurl.com/RECON-NSE-Mitigation} 
    more » « less
  3. Robotic search often involves teleoperating vehicles into unknown environments. In such scenarios, prior knowledge of target location or environmental map may be a viable resource to tap into and control other autonomous robots in the vicinity towards an improved search performance. In this paper, we test the hypothesis that despite having the same skill, prior knowledge of target or environment affects teleoperator actions, and such knowledge can therefore be inferred through robot movement. To investigate whether prior knowledge can improve human-robot team performance, we next evaluate an adaptive mutual-information blending strategy that admits a time-dependent weighting for steering autonomous robots. Human-subject experiments show that several features including distance travelled by the teleoperated robot, time spent staying still, speed, and turn rate, all depend on the level of prior knowledge and that absence of prior knowledge increased workload. Building on these results, we identified distance travelled and time spent staying still as movement cues that can be used to robustly infer prior knowledge. Simulations where an autonomous robot accompanied a human teleoperated robot revealed that whereas time to find the target was similar across all information-based search strategies, adaptive strategies that acted on movement cues found the target sooner more often than a single human teleoperator compared to non-adaptive strategies. This gain is diluted with number of robots, likely due to the limited size of the search environment. Results from this work set the stage for developing knowledge-aware control algorithms for autonomous robots in collaborative human-robot teams. 
    more » « less
  4. During a natural disaster such as hurricane, earth- quake, or fire, robots have the potential to explore vast areas and provide valuable aid in search & rescue efforts. These scenar- ios are often high-pressure and time-critical with dynamically- changing task goals. One limitation to these large scale deploy- ments is effective human-robot interaction. Prior work shows that collaboration between one human and one robot benefits from shared control. Here we evaluate the efficacy of shared control for human-swarm teaming in an immersive virtual reality environment. Although there are many human-swarm interaction paradigms, few are evaluated in high-pressure settings representative of their intended end use. We have developed an open-source virtual reality testbed for realistic evaluation of human-swarm teaming performance under pressure. We conduct a user study (n=16) comparing four human-swarm paradigms to a baseline condition with no robotic assistance. Shared control significantly reduces the number of instructions needed to operate the robots. While shared control leads to marginally improved team performance in experienced participants, novices perform best when the robots are fully autonomous. Our experimental results suggest that in immersive, high-pressure settings, the benefits of robotic assistance may depend on how the human and robots interact and the human operator’s expertise. 
    more » « less
  5. null (Ed.)
    Robots are increasingly being introduced into domains where they assist or collaborate with human counterparts. There is a growing body of literature on how robots might serve as collaborators in creative activities, but little is known about the factors that shape human perceptions of robots as creative collaborators. This paper investigates the effects of a robot’s social behaviors on people’s creative thinking and their perceptions of the robot. We developed an interactive system to facilitate collaboration between a human and a robot in a creative activity. We conducted a user study (n = 12), in which the robot and adult participants took turns to create compositions using tangram pieces projected on a shared workspace. We observed four human behavioral traits related to creativity in the interaction: accepting robot inputs as inspiration, delegating the creative lead to the robot, communicating creative intents, and being playful in the creation. Our findings suggest designs for co-creation in social robots that consider the adversarial effect of giving the robot too much control in creation, as well as the role playfulness plays in the creative process. 
    more » « less