skip to main content


Title: CAL: A Smart Home Environment for Monitoring Cognitive Decline
The increased growth of the aging population (i.e., 65 years or older) has led to emerging technologies in health care that provide in-home support to patients using devices throughout the household. Such smart home environments can monitor and interact with patients and their doctors/caregivers to augment patient medical data for diagnosis than can be generated via traditional doctor visits. Moreover, smart homes are enabling older adults to stay at home longer as opposed to permanent moves to assisted living or nursing facilities, increasing health and well-being and decreasing overall costs to the individual and society at large. This paper proposes Cognitive Assisted Living (CAL), a cyber-physical system comprising a network of embedded devices for collecting and analyzing patient speech patterns over time for monitoring cognitive function beginning in the early stages of Alzheimer’s disease. Specifically, CAL will analyze patient speech patterns and spatial abilities, via a set of daily interactions, to provide a longitudinal analysis of speech deterioration, a significant indicator of cognitive decline resulting from Alzheimer’s disease. Understanding the rate of cognitive decline can enable caregivers and health care professionals to better manage the patient’s daily care and medical requirements. Additionally, the patient’s cognitive state can be shared across household devices to increase the patient’s comfort and better accommodate lifestyle changes. To these ends, we describe the architecture of the proposed system, the methods to which we will detect cognitive decline, and specify how the system will provide continuing fault tolerance and data security at run time.  more » « less
Award ID(s):
1657061
NSF-PAR ID:
10063903
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the International Conference on Distributed Computing Systems
ISSN:
1063-6927
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    The aim of this study is to develop a Smarthealth system of monitoring, modelling, and interactive recommendation solutions (for caregivers) for in‐home dementia patient care that focuses on caregiver–patient relationships.

    Design

    This descriptive study employs a single‐group, non‐randomized trial to examine functionality, effectiveness, feasibility, and acceptability of the novel Smarthealth system.

    Methods

    Thirty persons with Alzheimer's Disease or related dementia and their family caregivers (N = 30 dyads) will receive and install Smarthealth technology in their home. There will be a 1‐month observation phase for collecting baseline mood states and a 2‐month implementation phase when caregivers will receive stress management techniques for each detected, negative mood state. Caregivers will report technique implementation and usefulness, sent via Ecological Momentary Assessment system to the study‐provided smartphone. Caregivers will provide daily, self‐reported mood and health ratings. Instruments measuring caregiver assessment of disruptive behaviours and their effect on caregivers; caregiver depressive symptoms, anxiety and stress; caregiver strain; and family functioning will be completed at baseline and 3 months. The study received funding in 2018 and ethics board approval in 2019.

    Discussion

    This study will develop and test novel in‐home technology to improve family caregiving relationships. Results from this study will help develop and improve the Smarthealth recommendation system and determine its usefulness, feasibility, and acceptability for persons with dementia and their family caregiver.

    Impact

    The Smarthealth technology discussed will provide in‐home stress reduction resources at a time when older adults may be experiencing increasingly high rates of isolation and anxiety and caregiver dyads may be experiencing high levels of relationship strain.

    Trial Registration

    This study was registered with Clinical Trials.gov (Identifier NCT04536701).

     
    more » « less
  2. null (Ed.)
    Digital health technology is becoming more ubiquitous in monitoring individuals’ health as both device functionality and overall prevalence increase. However, as individuals age, challenges arise with using this technology particularly when it involves neurodegenerative issues (e.g., for individuals with Parkinson’s disease, Alzheimer’s disease, and ALS). Traditionally, neurodegenerative diseases have been assessed in clinical settings using pen-and-paper style assessments; however, digital health systems allow for the collection of far more data than we ever could achieve using traditional methods. The objective of this work is the formation and implementation of a neurocognitive digital health system designed to go beyond what pen-and-paper based solutions can do through the collection of (a) objective, (b) longitudinal, and (c) symptom-specific data, for use in (d) personalized intervention protocols. This system supports the monitoring of all neurocognitive functions (e.g., motor, memory, speech, executive function, sensory, language, behavioral and psychological function, sleep, and autonomic function), while also providing methodologies for personalized intervention protocols. The use of specifically designed tablet-based assessments and wearable devices allows for the collection of objective digital biomarkers that aid in accurate diagnosis and longitudinal monitoring, while patient reported outcomes (e.g., by the diagnosed individual and caregivers) give additional insights for use in the formation of personalized interventions. As many interventions are a one-size-fits-all concept, digital health systems should be used to provide a far more comprehensive understanding of neurodegenerative conditions, to objectively evaluate patients, and form personalized intervention protocols to create a higher quality of life for individuals diagnosed with neurodegenerative diseases. 
    more » « less
  3. This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time. 
    more » « less
  4. The number of patients diagnosed with Alzheimer's disease is significantly increasing, given the boom in the aging population (i.e., 65 years and older). There exist approximately 5.5 million people in the United States that have been diagnosed with Alzheimer's, and as a result friends and family often need to provide care and support (estimated at 15 million people to the cost of $1.1 trillion). Common symptoms of Alzheimer's disease include memory loss, drastic behavioral change, depression, and loss in cognitive and/or spatial abilities. To support the growing need for caregivers, this project developed a prototype virtual reality (VR) environment for enabling caregivers to experience typical scenarios, as well as common strategies for managing each scenario, that they may experience when providing care and support, thereby providing. For instance, a patient may turn on a gas stove and then leave, forgetting that the stove is on. The caregiver then would be required to turn the stove off, to minimize any potential dangers. The prototype environment, CARETAKVR, was developed as an undergraduate research project for learning the process of research as well as the Unity programming environment and VR. The prototype provides a gamified training tool, masking scenarios as objectives and success with a score, to enable the potential caregiver to feel rewarded for correctly supporting the patient. The virtual patient is controlled via artificial intelligence and follows an initial set of guidelines to behave as a patient with early-stage Alzheimer's may behave. The caregiver is provided with a set of tasks to perform, in VR space, to achieve their goals for each scenario. Common tasks include Check Refrigerator, Check Stove, and Comfort Patient. This project has been demonstrated to colleagues in the health care domain and has seeded future collaborations to iterate the capabilities of this tool. All project artifacts have been open-sourced and are available online. 
    more » « less
  5. Background Home health aides (HHAs) provide necessary hands-on care to older adults and those with chronic conditions in their homes. Despite their integral role, HHAs experience numerous challenges in their work, including their ability to communicate with other health care professionals about patient care while caring for patients and access to educational resources. Although technological interventions have the potential to address these challenges, little is known about the technological landscape and existing technology-based interventions designed for and used by this workforce. Objective We conducted a scoping review of the scientific literature to identify existing studies that have described, designed, deployed, or tested technology-based tools and apps intended for use by HHAs to care for patients at home. To complement our literature review, we conducted a landscape analysis of existing mobile apps intended for HHAs providing in-home care. Methods We searched the following databases from their inception to October 2020: Ovid MEDLINE, Ovid Embase, Cochrane Library, and CINAHL (EBSCO). A total of 3 researchers screened the yield using prespecified inclusion and exclusion criteria. In addition, 4 researchers independently reviewed these articles, and a fifth researcher arbitrated when needed. Among studies that met the inclusion criteria, data were extracted and summarized narratively. An analysis of mobile health apps designed for HHAs was performed using a predefined set of terms to search Google Play and Apple App stores. Overall, 2 researchers independently screened the resulting apps, and those that met the inclusion criteria were categorized according to their intended purpose and functionality. Results Of the 8643 studies retrieved, 182 (2.11%) underwent full-text review, and 4.9% (9/182) met our inclusion criteria. Approximately half (4/9, 44%) of the studies were descriptive in nature, proposing technology-based systems (eg, web portals and dashboards) or prototypes without a technical or user-based evaluation of the technology. In most (7/9, 78%) papers, HHAs were just one of several users and not the sole or primary intended users of the technology. Our review of mobile apps yielded 166 Android and iOS apps, of which 48 (29%) met the inclusion criteria. These apps provided HHAs with one or more of the following functions: electronic visit verification (29/48, 60%), clocking in and out (23/48, 48%), documentation (22/48, 46%), task checklist (19/48, 40%), communication between HHA and agency (14/48, 29%), patient information (6/48, 13%), resources (5/48, 10%), and communication between HHA and patients (4/48, 8%). Of the 48 apps, 25 (52%) performed monitoring functions, 4 (8%) performed supporting functions, and 19 (40%) performed both. Conclusions A limited number of studies and mobile apps have been designed to support HHAs in their work. Further research and rigorous evaluation of technology-based tools are needed to assess their impact on the work HHAs provide in patient’s homes. 
    more » « less