skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: P4CGO: Control Plane Guided P4 Program Optimization
Software-defined networking (SDN) in conjunction with programmable switches revolutionizes network management, yet crafting optimal switch configurations remains complex. Traditional P4 optimizations rely on data plane level tuning. In this paper, we argue an essential piece for such optimizations is the control plane itself. We present P4CGO, a P4 compilation framework which focuses on realizing specifications based on control policies. P4CGO leverages user-defined objective functions and control plane policies to guide P4 program optimization through table merging and splitting. We have prototyped P4CGO and applied it solving real-world policy optimization problems.  more » « less
Award ID(s):
1837023 2046071 2319425
PAR ID:
10526396
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400707148
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Location:
Sydney NSW Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. Software Defined Networking (SDN) and Network Function Virtualization (NFV) are transforming Data Center (DC), Telecom, and enterprise networking. The programmability offered by P4 enables SDN to be more protocol-independent and flexible. Data Centers are increasingly adopting SmartNICs (sNICs) to accelerate packet processing that can be leveraged to support packet processing pipelines and custom Network Functions (NFs). However, there are several challenges in integrating and deploying P4 based SDN control as well as host and sNIC-based programmable NFs. These include configuration and management of the data plane components (Host and sNIC P4 switches) for the SDN control plane and effective utilization of data plane resources. P4NFV addresses these concerns and provides a unified P4 switch abstraction framework to simplify the SDN control plane, reducing management complexities, and leveraging a host-local SDN Agent to improve the overall resource utilization. The SDN agent considers the network-wide, host, and sNIC specific capabilities and constraints. Based on workload and traffic characteristics, P4NFV determines the partitioning of the P4 tables and optimal placement of NFs (P4 actions) to minimize the overall delay and maximize resource utilization. P4NFV uses Mixed Integer Linear Programming (MILP) based optimization formulation and achieves up to 2. 5X increase in system capacity while minimizing the delay experienced by flows. P4NFV considers the number of packet exchanges, flow size, and state dependency to minimize the delay imposed by data transmission over PCI Express interface. 
    more » « less
  2. Networks in many safety-critical systems like avionics, automotive, and industrial plants have strict end-to-end delay requirements to be met for correct system operation. Existing software-defined real-time networks do not support data plane programmability provided by recent protocol-independent switch architectures such as P4. Our research enables time-aware flow forwarding in P4-enabled software-defined time-critical networks. In this paper, we introduce time-aware flow scheduling for P4-enabled SDN architectures. We study two scheduling policies: the first one prioritizes flows based on slack (i.e., how much time is left to reach the destination), and the second one uses finish time as a priority metric, which is determined from its data rate requirements. Both approaches were implemented and tested in the P4 software stack. We find that the slack-based forwarding scheme performs better in retaining real-time requirements. Our publicly released scheduler implementations will assist network engineers in adapting programmable switches to safety-critical applications that demand precise timing guarantees. 
    more » « less
  3. Recent trends in software-defined networking have extended network programmability to the data plane. Unfortunately, the chance of introducing bugs increases significantly. Verification can help prevent bugs by assuring that the program does not violate its requirements. Although research on the verification of P4 programs is very active, we still need tools to make easier for programmers to express properties and to rapidly verify complex invariants. In this paper, we leverage assertions and symbolic execution to propose a more general P4 verification approach. Developers annotate P4 programs with assertions expressing general network correctness properties; the result is transformed into C models and all possible paths symbolically executed. We implement a prototype, and use it to show the feasibility of the verification approach. Because symbolic execution does not scale well, we investigate a set of techniques to speed up the process for the specific case of P4 programs. We use the prototype implemented to show the gains provided by three speed up techniques (use of constraints, program slicing, parallelization), and experiment with different compiler optimization choices. We show our tool can uncover a broad range of bugs, and can do it in less than a minute considering various P4 applications. 
    more » « less
  4. Recent trends in software-defined networking have extended network programmability to the data plane through programming languages such as P4. Unfortunately, the chance of introducing bugs in the network also increases significantly in this new context. Existing data plane verification approaches are unable to model P4 programs, or they present severe restrictions in the set of properties that can be modeled. In this paper, we introduce a data plane program verification approach based on assertion checking and symbolic execution. Network programmers annotate P4 programs with assertions expressing general security and correctness properties. Once annotated, these programs are transformed into C-based models and all their possible paths are symbolically executed. Results show that the proposed approach, called ASSERT-P4, can uncover a broad range of bugs and software flaws. Furthermore, experimental evaluation shows that it takes less than a minute for verifying various P4 applications proposed in the literature. 
    more » « less
  5. Programmable networks support a wide variety of applications, including access control, routing, monitoring, caching, and synchronization. As demand for applications grows, so does resource contention within the switch data plane. Cramming applications onto a switch is a challenging task that often results in non-modular programming, frustrating “trial and error” compile-debug cycles, and suboptimal use of resources. In this paper, we present P4All, an extension of P4 that allows programmers to define elastic data structures that stretch automatically to make optimal use of available switch resources. These data structures are defined using symbolic primitives (that parameterize the size and shape of the structure) and objective functions (that quantify the value gained or lost as that shape changes). A top-level optimization function specifies how to share resources amongst data structures or applications. We demonstrate the inherent modularity and effectiveness of our design by building a range of reusable elastic data structures including hash tables, Bloom filters, sketches, and key-value stores, and using those structures within larger applications. We show how to implement the P4All compiler using a combination of dependency analysis, loop unrolling, linear and non-linear constraint generation, and constraint solving. We evaluate the compiler’s performance, showing that a range of elastic programs can be compiled to P4 in few minutes at most, but usually less. 
    more » « less