skip to main content


Title: Analyzing Performance of BiCGStab with Hierarchical Matrix on GPU clusters
ppohBEM is an open-source software package im- plementing the boundary element method. One of its main software tasks is the solution of the dense linear system of equations, for which, ppohBEM relies on another software package called HACApK. To reduce the cost of solving the linear system, HACApK hierarchically compresses the coefficient matrix using adaptive cross approximation. This hierarchical compression greatly reduces the storage and time complexities of the solver and enables the solution of large-scale boundary value problems. To extend the capability of ppohBEM, in this paper, we carefully port the HACApK’s linear solver onto GPU clusters. Though the potential of the GPUs has been widely accepted in high-performance computing, it is still a challenge to utilize the GPUs for a solver, like HACApK’s, that requires fine-grained computation and global communication. First, to utilize the GPUs, we integrate the batched GPU kernel that was recently released in the MAGMA software package. We discuss several techniques to improve the performance of the batched kernel. We then study various techniques to address the inter-GPU communication and study their effects on state-of- the-art GPU clusters. We believe that the techniques studied in this paper are of interest to a wide range of software packages running on GPUs, especially with the increasingly complex node architectures and the growing costs of the communication. We also hope that our efforts to integrate the GPU kernel or to setup the inter-GPU communication will influence the design of the future-generation batched kernels or the communication layer within a software stack.  more » « less
Award ID(s):
1740250
NSF-PAR ID:
10065618
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper documents development of a multiple‐Graphics Processing Unit (GPU) version of FUNWAVE‐Total Variation Diminishing (TVD), an open‐source model for solving the fully nonlinear Boussinesq wave equations using a high‐order TVD solver. The numerical schemes of FUNWAVE‐TVD, including Cartesian and spherical coordinates, are rewritten using CUDA Fortran, with inter‐GPU communication facilitated by the Message Passing Interface. Since FUNWAVE‐TVD involves the discretization of high‐order dispersive derivatives, the on‐chip shared memory is utilized to reduce global memory access. To further optimize performance, the batched tridiagonal solver is scheduled simultaneously in multiple‐GPU streams, which can reduce the GPU execution time by 20–30%. The GPU version is validated through a benchmark test for wave runup on a complex shoreline geometry, as well as a basin‐scale tsunami simulation of the 2011 Tohoku‐oki event. Efficiency evaluation shows that, in comparison with the CPU version running at a 36‐core HPC node, speedup ratios of 4–7 and above 10 can be observed for single‐ and double‐GPU runs, respectively. The performance metrics of multiple‐GPU implementation needs to be further evaluated when appropriate.

     
    more » « less
  2. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less
  3. Summary

    This paper studies the performance of different algorithms for solving a dense symmetric indefinite linear system of equations on multicore CPUs with a Graphics Processing Unit (GPU). To ensure the numerical stability of the factorization,pivotingis required. Obtaining high performance of such algorithms on the GPU is difficult because all the existing pivoting strategies lead to frequent synchronizations and irregular data accesses. Until recently, there has not been any implementation of these algorithms on a hybrid CPU/GPU architecture. To improve their performance on the hybrid architecture, we explore different techniques to reduce the expensive data transfer and synchronization between the CPU and GPU, or on the GPU (e.g., factorizing the matrix entirely on the GPU or in a communication‐avoiding fashion). We also study the performance of the solver using iterative refinements along with the factorization without pivoting combined with the preprocessing technique based on random butterfly transformations, or with the mixed‐precision algorithm where the matrix is factorized in single precision. This randomization algorithm only has a probabilistic proof on the numerical stability, and for this paper, we only focused on the mixed‐precision algorithm without pivoting. However, they demonstrate that we can obtain good performance on the GPU by avoiding the pivoting and using the lower precision arithmetics, respectively. As illustrated with the application in acoustics studied in this paper, in many practical cases, the matrices can be factorized without pivoting. Because the componentwise backward error computed in the iterative refinement signals when the algorithm failed to obtain the desired accuracy, the user can use these potentially unstable but efficient algorithms in most of the cases and fall back to a more stable algorithm with pivoting only in the case of the failure. Copyright © 2017 John Wiley & Sons, Ltd.

     
    more » « less
  4. Alternating Least Square (ALS) is a classic algorithm to solve matrix factorization widely used in recommendation systems. Existing efforts focus on parallelizing ALS on multi-/many-core platforms to handle large datasets. Recently, an optimized ALS variant called eALS was proposed, and it yields significantly lower time complexity and higher recommending accuracy than ALS. However, it is challenging to parallelize eALS on modern parallel architectures (e.g., CPUs and GPUs) because: 1) eALS’ data dependence prevents it from fine-grained parallel execution, thus eALS cannot fully utilize GPU's massive parallelism, 2) the sparsity of input data causes poor data locality and unbalanced workload, and 3) its large memory usage cannot fit into GPU's limited on-device memory, particularly for real-world large datasets. This paper proposes an efficient CPU/GPU heterogeneous recommendation system based on fast eALS for the first time (called HEALS) that consists of a set of system optimizations. HEALS employs newly designed architecture-adaptive data formats to achieve load balance and good data locality on CPU and GPU. HEALS also presents a CPU/GPU collaboration model that can explore both task parallelism and data parallelism. HEALS also optimizes this collaboration model with data communication overlapping and dynamic workload partition between CPU and GPU. Moreover, HEALS is further enhanced by various parallel techniques (e.g., loop unrolling, vectorization, and GPU parallel reduction). Evaluation results show that HEALS outperforms other state-of-the-art baselines in both performance and recommendation quality. Particularly, HEALS achieves up to 5.75 x better performance than a state-of-the-art ALS GPU library. This work also demonstrates the possibility of conducting fast recommendations on large datasets with constrained (or relaxed) hardware resources, e.g, a single CPU/GPU node. 
    more » « less
  5. We present a high-performance GPU kernel with a substantial speedup over vendor libraries for very small matrix computations. In addition, we discuss most of the challenges that hinder the design of efficient GPU kernels for small matrix algorithms. We propose relevant algorithm analysis to harness the full power of a GPU, and strategies for predicting the performance, before introducing a proper implementation. We develop a theoretical analysis and a methodology for high-performance linear solvers for very small matrices. As test cases, we take the Cholesky and LU factorizations and show how the proposed methodology enables us to achieve a performance close to the theoretical upper bound of the hardware. This work investigates and proposes novel algorithms for designing highly optimized GPU kernels for solving batches of hundreds of thousands of small-size Cholesky and LU factorizations. Our focus on efficient batched Cholesky and batched LU kernels is motivated by the increasing need for these kernels in scientific simulations (e.g., astrophysics applications). Techniques for optimal memory traffic, register blocking, and tunable concurrency are incorporated in our proposed design. The proposed GPU kernels achieve performance speedups versus CUBLAS of up to 6× for the factorizations, using double precision arithmetic on an NVIDIA Pascal P100 GPU. 
    more » « less