Focal ratio degradation (FRD), the decrease of light’s focal ratio between the input into an optical fiber and the output, is important to characterize for astronomical spectrographs due to its effects on throughput and the point spread function. However, while FRD is a function of many fiber properties such as stresses, microbending, and surface imperfections, angular misalignments between the incoming light and the face of the fiber also affect the light profile and complicate this measurement. A compact experimental setup and a model separating FRD from angular misalignment was applied to a fiber subjected to varying stresses or angular misalignments to determine the magnitude of these effects. The FRD was then determined for a fiber in a fiber positioner that will be used in the Subaru Prime Focus Spectrograph (PFS). The analysis we carried out for the PFS positioner suggests that effects of angular misalignment dominate and no significant FRD increase due to stress should occur.
more »
« less
Coil Distance and Angle Misalignment Effects on the Mutual Inductance for 13.56 MHz WRAP Sensors
In the new era of smart and connected health, new technologies are needed for unobtrusive and seamless monitoring of physiological signals at real life settings. In this grand challenge, we are developing a novel technology called Wireless Resistive Analog Passive (WRAP) sensors. WRAP sensors utilizes printed spiral coil (PSC) inductive link whose sensitivity directly depends on the mutual inductance between primary and secondary coils and it changes due to the physical misalignment. We have previously reported COMSOL simulation results for distance and angular misalignments. In this paper we report experimental results of distance and angular misalignments and compare them to analytical and simulation results for distance. The experimental and analytical results are in good agreement while the simulation results are loosely correlated. For the angular misalignment, the experimental results follow similar trend as simulation results, however analytical results shows disagreement. This work is expected to aid in optimization of PSC for WRAP sensors.
more »
« less
- Award ID(s):
- 1637250
- PAR ID:
- 10065828
- Date Published:
- Journal Name:
- National Radio Science Meeting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Near-field resonant-based wireless power transfer (WPT) technology has a significant impact in many applications ranging from charging of biomedical implants to electric vehicles (EVs). The design of robust WPT systems is challenging due to its position-dependent power transfer efficiency (PTE). In this paper, a new approach is presented to address WPT's strong sensitivity to the coupling factor variation between the transmit and receive coils. The introduced technique relies on harnessing the unique properties of a specific class of nonlinear resonant circuits to design position-insensitive WPT systems that maintain a high PTE over large transmission distances and misalignments without tuning the source's operating frequency or employing tunable matching networks, as well as any active feedback/control circuitry. A nonlinear-resonant-based WPT circuit capable of transmitting 60 W at 2.25 MHz is designed and fabricated. The circuit maintains a high PTE of 86% over a transmission distance variation of 20 cm. Furthermore, transmit power and PTE are maintained over a large lateral misalignment up to ±50% of the coil diameter and angular misalignment up to ±75°. The new design approach enhances the performance of WPT systems by significantly extending the range of coupling factors over which both load power and high PTE are maintained.more » « less
-
null (Ed.)Over the last few decades, Gyro-Free Inertial Measurement Units (GF-IMUs) have been extensively researched to overcome the limitations of gyroscopes. This research presents a Non-coplanar Accelerometer Array (NAA) for estimating angular velocity with non-specific geometric arrangement of four or more triaxial accelerometers with non-coplanarity constraint. The presented proof of non-coplanar spacial arrangement also provides insights into propagation of the sensor noise and construction of the noise covariance matrices. The system noise depends on the singular values of the relative displacement matrix (between the sensors). A dynamical system model with uncorrelated process and measurement noise is proposed where the accelerometer readings are used simultaneously as process and measurement inputs. The angular velocity is estimated using an Extended Kalman Filter (EKF) that discretizes and linearizes the continuous-discrete time dynamical system. The simulations are performed on a Cube-NAA (Cu-NAA) comprising four accelerometers placed at different vertices of a cube.They analyze the estimation error for static and dynamic movement as the distance between the accelerometers (four accelerometers in cube-orientation) is varied. Here, the system noise is observed to decrease inversely with the length of the cube edge as the arrangement is kept identical. Consequently, the simulation results indicate asymptotic decrease in the standard error of estimation with edge length. The experiments are conducted on a Cu-NAA with five reflective optical markers. The reflective markers are visually tracked using Vicon® to construct the ground truth angular velocity. This unique experimental setup, apart from providing three degrees of rotational freedom of movement, also allows for three degrees of spacial translation (linear acceleration of the Cu-NAA in space). The simulation and experimental results indicate better performance of the proposed EKF as compared to one with correlated process and measurement noises.more » « less
-
null (Ed.)Wearable sensors are a topic of interest in medical healthcare monitoring due to their compact size and portability. However, providing power to the wearable sensors for continuous health monitoring applications is a great challenge. As the batteries are bulky and require frequent charging, the integration of the wireless power transfer (WPT) module into wearable and implantable sensors is a popular alternative. The flexible sensors benefit by being wirelessly powered, as it not only expands an individual’s range of motion, but also reduces the overall size and the energy needs. This paper presents the design, modeling, and experimental characterization of flexible square-shaped spiral coils with different scaling factors for WPT systems. The effects of coil scaling factor on inductance, capacitance, resistance, and the quality factor (Q-factor) are modeled, simulated, and experimentally validated for the case of flexible planar coils. The proposed analytical modeling is helpful to estimate the coil parameters without using the time-consuming Finite Element Method (FEM) simulation. The analytical modeling is presented in terms of the scaling factor to find the best-optimized coil dimensions with the maximum Q-factor. This paper also presents the effect of skin contact with the flexible coil in terms of the power transfer efficiency (PTE) to validate the suitability as a wearable sensor. The measurement results at 405 MHz show that when in contact with the skin, the 20 mm× 20 mm receiver (RX) coil achieves a 42% efficiency through the air media for a 10 mm distance between the transmitter (TX) and RX coils.more » « less
-
In a sweep cover problem, mobile sensors move around to collect information from positions of interest (PoIs) periodically and timely. A PoI is sweep-covered if it is visited at least once in every time period t. In this paper, we study approximation algorithms on three types of sweep cover problems. The partial sweep cover problem (PSC) aims to use the minimum number of mobile sensors to sweep-cover at least a given number of PoIs. The prize-collecting sweep cover problem aims to minimize the cost of mobile sensors plus the penalties on those PoIs that are not sweep-covered. The budgeted sweep cover problem (BSC) aims to use a budgeted number N of mobile sensors to sweep-cover as many PoIs as possible. We propose a unified approach which can yield approximation algorithms for PSC and PCSC within approximation ratio at most 8, and a bicriteria (4, 1 2 )-approximation algorithm for BSC (that is, no more than 4N mobile sensors are used to sweep-cover at least 1 2 opt PoIs, where opt is the number of PoIs that can be sweep-covered by an optimal solution). Furthermore, our results for PSC and BSC can be extended to their weighted version, and our algorithm for PCSC answers a question proposed in Liang etal. (Theor Comput Sci, 2022) on PCSCmore » « less
An official website of the United States government

