We study the fully dynamic All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. Given an n-vertex graph G with non-negative edge lengths, that undergoes an online sequence of edge insertions and deletions, the goal is to support approximate distance queries and shortest-path queries. We provide a deterministic algorithm for this problem, that, for a given precision parameter є, achieves approximation factor (loglogn)2O(1/є3), and has amortized update time O(nєlogL) per operation, where L is the ratio of longest to shortest edge length. Query time for distance-query is O(2O(1/є)· logn· loglogL), and query time for shortest-path query is O(|E(P)|+2O(1/є)· logn· loglogL), where P is the path that the algorithm returns. To the best of our knowledge, even allowing any o(n)-approximation factor, no adaptive-update algorithms with better than Θ(m) amortized update time and better than Θ(n) query time were known prior to this work. We also note that our guarantees are stronger than the best current guarantees for APSP in decremental graphs in the adaptive-adversary setting. In order to obtain these results, we consider an intermediate problem, called Recursive Dynamic Neighborhood Cover (RecDynNC), that was formally introduced in [Chuzhoy, STOC ’21]. At a high level, given an undirected edge-weighted graph G undergoing an online sequence of edge deletions, together with a distance parameter D, the goal is to maintain a sparse D-neighborhood cover of G, with some additional technical requirements. Our main technical contribution is twofolds. First, we provide a black-box reduction from APSP in fully dynamic graphs to the RecDynNC problem. Second, we provide a new deterministic algorithm for the RecDynNC problem, that, for a given precision parameter є, achieves approximation factor (loglogm)2O(1/є2), with total update time O(m1+є), where m is the total number of edges ever present in G. This improves the previous algorithm of [Chuzhoy, STOC ’21], that achieved approximation factor (logm)2O(1/є) with similar total update time. Combining these two results immediately leads to the deterministic algorithm for fully-dynamic APSP with the guarantees stated above.
more »
« less
A Communication-Avoiding 3D LU Factorization Algorithm for Sparse Matrices
We propose a new algorithm to improve the strong scalability of right-looking sparse LU factorization on distributed memory systems. Our 3D sparse LU algorithm uses a three-dimensional PI process grid, aggressively exploits elimination tree parallelism and trades off increased memory for reduced per-process communication. We also analyze the asymptotic improvements for planar graphs (e.g., from 2D grid or mesh domains) and certain non-planar graphs (specifically for 3D grids and meshes). For planar graphs with n vertices, our algorithm reduces communication volume asymptotically in n by a factor of O(sqrt(logn)) and latency by a factor of O(logn). For non-planar cases, our algorithm can reduce the per-process communication volume by 3× and latency by O(n^1/3) times. In all cases, the memory needed to achieve these gains is a constant factor. We implemented our algorithm by extending the 2D data structure used in SuperLU_DIST. Our new 3D code achieves speedups up to 27× for planar graphs and up to 3.3× for non-planar graphs over the baseline 2D SuperLU_DIST when run on 24,000 cores of a Cray XC30.
more »
« less
- Award ID(s):
- 1710371
- PAR ID:
- 10066186
- Date Published:
- Journal Name:
- Proceedings - IEEE International Parallel and Distributed Processing Symposium
- ISSN:
- 1530-2075
- Page Range / eLocation ID:
- 908-919
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present O(log logn)-round algorithms in the Massively Parallel Computation (MPC) model, with ˜O(n) memory per machine, that compute a maximal independent set, a 1 + ε approximation of maximum matching, and a 2 + ε approximation of minimum vertex cover, for any n-vertex graph and any constant ε > 0. These improve the state of the art as follows: • Our MIS algorithm leads to a simple O(log log Δ)-round MIS algorithm in the CONGESTED-CLIQUE model of distributed computing, which improves on the ˜O (plog Δ)-round algorithm of Ghaffari [PODC’17]. • OurO(log logn)-round (1+ε)-approximate maximum matching algorithm simplifies or improves on the following prior work: O(log2 logn)-round (1 + ε)-approximation algorithm of Czumaj et al. [STOC’18] and O(log logn)-round (1 + ε)- approximation algorithm of Assadi et al. [arXiv’17]. • Our O(log logn)-round (2+ε)-approximate minimum vertex cover algorithm improves on an O(log logn)-round O(1)- approximation of Assadi et al. [arXiv’17].more » « less
-
Let f: {0, 1}n → {0, 1} be a boolean function, and let f∧(x, y) = f(x ∧ y) denote the AND-function of f, where x ∧ y denotes bit-wise AND. We study the deterministic communication complexity of f∧ and show that, up to a logn factor, it is bounded by a polynomial in the logarithm of the real rank of the communication matrix of f∧. This comes within a logn factor of establishing the log-rank conjecture for AND-functions with no assumptions on f. Our result stands in contrast with previous results on special cases of the log-rank conjecture, which needed significant restrictions on f such as monotonicity or low F2-degree. Our techniques can also be used to prove (within a logn factor) a lifting theorem for AND-functions, stating that the deterministic communication complexity of f∧ is polynomially related to the AND-decision tree complexity of f. The results rely on a new structural result regarding boolean functions f: {0, 1}n → {0, 1} with a sparse polynomial representation, which may be of independent interest. We show that if the polynomial computing f has few monomials then the set system of the monomials has a small hitting set, of size poly-logarithmic in its sparsity. We also establish extensions of this result to multi-linear polynomials f: {0, 1}n → with a larger range.more » « less
-
We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or removed. Our algorithm leverages distributed sparse matrices as the core data structures, utilizing equivalent sparse matrix operations to execute graph updates. By reducing unnecessary communication among processes and employing shared-memory parallelism, we accelerate updates of distributed graphs. Additionally, we maintain a balanced load in the output matrix by permuting the resultant matrix during the update process. We demonstrate that our streaming update algorithm is at least 25 times faster than alternative linear-algebraic methods and scales linearly up to 4,096 cores (32 nodes) on a Cray EX supercomputer.more » « less
-
This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d3Nb)(b≤2) or better, compared to the exponential order O(N(logN)d−1) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration.more » « less
An official website of the United States government

