skip to main content


Title: #ILookLikeAnEngineer: Using Social Media Based Hashtag Activism Campaigns as a Lens to Better Understand Engineering Diversity Issues
Each year, significant investment of time and resources is made to improve diversity within engineering across a range of federal and state agencies, private/not-for-profit organizations, and foundations. In spite of decades of investments, efforts have not yielded desired returns - participation by minorities continues to lag at a time when STEM workforce requirements are increasing. In recent years a new stream of data has emerged - online social networks, including Twitter, Facebook, and Instagram - that act as a key sensor of social behavior and attitudes of the public. Almost 87% of the American population now participates in some form of social media activity. Consequently, social networking sites have become powerful indicators of social action and social media data has shown significant promise for studying many issues including public health communication, political campaign, humanitarian crisis, and, activism. We argue that social media data can likewise be leveraged to better understand and improve engineering diversity. As a case study to illustrate the viability of the approach, we present findings from a campaign, #ILookLikeAnEngineer (using Twitter data – 19,354 original tweets and 29,529 retweets), aimed at increasing gender diversity in the engineering workplace. The campaign provided a continuous momentum to the overall effort to increase diversity and novel ways of connecting with relevant audience. Our analysis demonstrates that diversity initiatives related to STEM attract voices from various entities including individuals, large corporations, media outlets, and community interest groups.  more » « less
Award ID(s):
1707837
NSF-PAR ID:
10066229
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of ASEE CONECD Conference, Crystal City, VA, USA.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Community engagement efforts have become an important avenue for raising public interest and know-how related to engineering. These efforts draw the young and the diverse into seeing engineering as a worthwhile profession. One such effort at the national level in the U.S. is the “National Engineers Week”. This is a week-long celebration held every February that consists of numerous events and activities organized for the general public with a focus towards students, women, and under-represented groups. In this paper, we examined this effort through the lens of social media and analyzed Twitter data collected for two hashtags used during the National Engineers Week 2017: “#eweek2017” and “#engineersweek”. Our dataset consisted of 6,583 original tweets and 10,885 retweets. To study the impact of the outreach we used three analytical approaches: descriptive analysis, content analysis, and network analysis. We found that the Twitter campaign participation was dominated by engineering companies and individual users followed by a limited participation of educational institutions, professional engineering associations, and non-profits. As opposed to other popular hashtag campaigns, not a single news media organization was identified as a participating user signaling a lower new media-driven propagation of the campaign among the public. From a content perspective, the tweets can be categorized as event promotion, showcasing employees of engineering companies, or encouraging and inspiring public (especially women and children) towards engineering. With the growing popularity of social media, community engagement efforts need to strategically leverage hashtags and other media elements for a broader impact. 
    more » « less
  2. Risk perception and risk averting behaviors of public agencies in the emergence and spread of COVID-19 can be retrieved through online social media (Twitter), and such interactions can be echoed in other information outlets. This study collected time-sensitive online social media data and analyzed patterns of health risk communication of public health and emergency agencies in the emergence and spread of novel coronavirus using data-driven methods. The major focus is toward understanding how policy-making agencies communicate risk and response information through social media during a pandemic and influence community response—ie, timing of lockdown, timing of reopening, etc.—and disease outbreak indicators—ie, number of confirmed cases and number of deaths. Twitter data of six major public organizations (1,000-4,500 tweets per organization) are collected from February 21, 2020 to June 6, 2020. Several machine learning algorithms, including dynamic topic model and sentiment analysis, are applied over time to identify the topic dynamics over the specific timeline of the pandemic. Organizations emphasized on various topics—eg, importance of wearing face mask, home quarantine, understanding the symptoms, social distancing and contact tracing, emerging community transmission, lack of personal protective equipment, COVID-19 testing and medical supplies, effect of tobacco, pandemic stress management, increasing hospitalization rate, upcoming hurricane season, use of convalescent plasma for COVID-19 treatment, maintaining hygiene, and the role of healthcare podcast in different timeline. The findings can benefit emergency management, policymakers, and public health agencies to identify targeted information dissemination policies for public with diverse needs based on how local, federal, and international agencies reacted to COVID-19. 
    more » « less
  3. Background Social networks such as Twitter offer the clinical research community a novel opportunity for engaging potential study participants based on user activity data. However, the availability of public social media data has led to new ethical challenges about respecting user privacy and the appropriateness of monitoring social media for clinical trial recruitment. Researchers have voiced the need for involving users’ perspectives in the development of ethical norms and regulations. Objective This study examined the attitudes and level of concern among Twitter users and nonusers about using Twitter for monitoring social media users and their conversations to recruit potential clinical trial participants. Methods We used two online methods for recruiting study participants: the open survey was (1) advertised on Twitter between May 23 and June 8, 2017, and (2) deployed on TurkPrime, a crowdsourcing data acquisition platform, between May 23 and June 8, 2017. Eligible participants were adults, 18 years of age or older, who lived in the United States. People with and without Twitter accounts were included in the study. Results While nearly half the respondents—on Twitter (94/603, 15.6%) and on TurkPrime (509/603, 84.4%)—indicated agreement that social media monitoring constitutes a form of eavesdropping that invades their privacy, over one-third disagreed and nearly 1 in 5 had no opinion. A chi-square test revealed a positive relationship between respondents’ general privacy concern and their average concern about Internet research (P<.005). We found associations between respondents’ Twitter literacy and their concerns about the ability for researchers to monitor their Twitter activity for clinical trial recruitment (P=.001) and whether they consider Twitter monitoring for clinical trial recruitment as eavesdropping (P<.001) and an invasion of privacy (P=.003). As Twitter literacy increased, so did people’s concerns about researchers monitoring Twitter activity. Our data support the previously suggested use of the nonexceptionalist methodology for assessing social media in research, insofar as social media-based recruitment does not need to be considered exceptional and, for most, it is considered preferable to traditional in-person interventions at physical clinics. The expressed attitudes were highly contextual, depending on factors such as the type of disease or health topic (eg, HIV/AIDS vs obesity vs smoking), the entity or person monitoring users on Twitter, and the monitored information. Conclusions The data and findings from this study contribute to the critical dialogue with the public about the use of social media in clinical research. The findings suggest that most users do not think that monitoring Twitter for clinical trial recruitment constitutes inappropriate surveillance or a violation of privacy. However, researchers should remain mindful that some participants might find social media monitoring problematic when connected with certain conditions or health topics. Further research should isolate factors that influence the level of concern among social media users across platforms and populations and inform the development of more clear and consistent guidelines. 
    more » « less
  4. We present a study that examines how a social media activism campaign aimed at improving gender diversity within engineering gained and maintained momentum in its early period. We examined over 50,000 Tweets posted over the first ~75 days of the #ILookLikeAnEngineer campaign and found that diverse participation – of types of users – increased activity at crucial moments. We categorize these triggers into four types: 1) Event-Driven: Alignment of the campaign with offline events related to the issue (Diversity SFO, Disrupt, etc.); 2) Media-Driven: News coverage of the events in the media (TechCrunch, CNN, BBC, etc.); 3) Industry-Driven: Web participation in the campaign by large organizations (Microsoft, Tesla, GE, Cisco, etc.); and 4) Personality-Driven: Alignment of the events with popular and/or known personalities (e.g. Isis Anchalee; Michelle Sun; Ada Lovelace.) This study illustrates how one mechanism – triggering – supports connective action in social media campaign. 
    more » « less
  5. This article seeks to go beyond traditional GIS methods used in creating maps for disaster response that commonly look at the disaster extent. Instead, a slightly different approach is taken using social media data collected from Twitter to explore how people communicate during disaster events, how online communities form and evolve, and how communication methods can improve. This study collected the Twitter data during the 2015 Nepal earthquake disaster and applied a spatiotemporal analysis to find any patterns that show shadows or gaps in communication channels in local communities’ communication. Linkages in social media can be used to understand how people communicate, how quickly they diffuse information, and how social networks form online during disasters. These can improve communication throughout disaster phases. This study offers a deeper understanding of the kinds of spatiotemporal patterns and spatial social networks that can be observed during disaster events. The need for better communication during disaster events is imperative for better disaster management, increasing community resilience, and saving lives. 
    more » « less