Each year, significant investment of time and resources is made to improve diversity within engineering across a range of federal and state agencies, private/not-for-profit organizations, and foundations. In spite of decades of investments, efforts have not yielded desired returns - participation by minorities continues to lag at a time when STEM workforce requirements are increasing. In recent years a new stream of data has emerged - online social networks, including Twitter, Facebook, and Instagram - that act as a key sensor of social behavior and attitudes of the public. Almost 87% of the American population now participates in some form of social media activity. Consequently, social networking sites have become powerful indicators of social action and social media data has shown significant promise for studying many issues including public health communication, political campaign, humanitarian crisis, and, activism. We argue that social media data can likewise be leveraged to better understand and improve engineering diversity. As a case study to illustrate the viability of the approach, we present findings from a campaign, #ILookLikeAnEngineer (using Twitter data – 19,354 original tweets and 29,529 retweets), aimed at increasing gender diversity in the engineering workplace. The campaign provided a continuous momentum to the overall effort to increase diversity and novel ways of connecting with relevant audience. Our analysis demonstrates that diversity initiatives related to STEM attract voices from various entities including individuals, large corporations, media outlets, and community interest groups.
more »
« less
#EngineersWeek: Broadening our Understanding of Community Engagement through Analysis of Twitter Use during the National Engineers Week.
Community engagement efforts have become an important avenue for raising public interest and know-how related to engineering. These efforts draw the young and the diverse into seeing engineering as a worthwhile profession. One such effort at the national level in the U.S. is the “National Engineers Week”. This is a week-long celebration held every February that consists of numerous events and activities organized for the general public with a focus towards students, women, and under-represented groups. In this paper, we examined this effort through the lens of social media and analyzed Twitter data collected for two hashtags used during the National Engineers Week 2017: “#eweek2017” and “#engineersweek”. Our dataset consisted of 6,583 original tweets and 10,885 retweets. To study the impact of the outreach we used three analytical approaches: descriptive analysis, content analysis, and network analysis. We found that the Twitter campaign participation was dominated by engineering companies and individual users followed by a limited participation of educational institutions, professional engineering associations, and non-profits. As opposed to other popular hashtag campaigns, not a single news media organization was identified as a participating user signaling a lower new media-driven propagation of the campaign among the public. From a content perspective, the tweets can be categorized as event promotion, showcasing employees of engineering companies, or encouraging and inspiring public (especially women and children) towards engineering. With the growing popularity of social media, community engagement efforts need to strategically leverage hashtags and other media elements for a broader impact.
more »
« less
- Award ID(s):
- 1707837
- PAR ID:
- 10066212
- Date Published:
- Journal Name:
- Proceedings of 125th ASEE Annual Conference, Salt Lake City, USA.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplification risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk perception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimizing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% contained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing.more » « less
-
null (Ed.)Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplifica- tion risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk per- ception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimiz- ing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% con- tained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environ- ment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing.more » « less
-
Article Authors Metrics Comments Media Coverage Peer Review Abstract Introduction Methods Results Discussion Conclusions Supporting information References Reader Comments Figures Abstract Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplification risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk perception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimizing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% contained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing.more » « less
-
Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust.more » « less