skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planning for Sea Level Rise: An AGU Talk in the Form of a Co-Production Experiment Exploring Recent Science (Invited)
Global sea level rise (SLR) may present the most urgent climate change adaptation challenge facing coastal communities today. The direction is clear, impacts are manifesting now, and the pace of rise is likely to accelerate. As a result, many coastal communities have begun planning their adaptation response and some are quite far along in the process. At the same time, evolving science provides new observations, models, and understanding of land-ocean dynamics that can increase clarity while also in many ways increase uncertainty about the scope, timing, and regional nature of SLR. The planning, design, and construction of water infrastructure has a relatively long timeline (up to 30 years), and thus the evolution of scientific knowledge presents challenges for communities already planning for SLR based on previous information. When does science become actionable for decision-makers? Are there characteristics or thresholds that could cause communities decide to move from one set of scenarios to another, or change approaches altogether? This talk focuses on two important studies different in kind but dominating the conversation about SLR adaptation planning today. First, DeConto and Pollard (2016) have suggested significantly higher upper end projections for Antarctic ice sheet melt, which increase both global and regional SLR above most previously assumed upper limits. Second, probabilistic projections using model output and expert elicitation as presented in Kopp et al (2014) are increasingly appearing in federal reports and planning-related documents. These two papers are pushing the boundaries of the science-to-planning interface, while the application of this work as actionable science is far from settled. This talk will present the outcome of recent conversations among our diverse author team. The authors are engaged in SLR planning related contexts from many angles and perspectives and include the aforementioned Kopp and DeConto as well as representatives of the City of San Francisco, Army Corps of Engineers, Environmental Protection Agency, and engineering consultant community. Attendees of this session will hear a presentation demonstrating co-production in process, including topics about which the authors have and have not agreed upon to date, with some attention to next steps in the process.  more » « less
Award ID(s):
1664013
PAR ID:
10066643
Author(s) / Creator(s):
Date Published:
Journal Name:
AGU Fall Meeting 2017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The first New Jersey Science and Technical Advisory Panel (STAP) on Sea-Level Rise and Coastal Storms was convened by Rutgers University on behalf of the NJ Climate Change Alliance in 2015, culminating in a 2016 report that identified planning options for practitioners to enhance the resilience of New Jersey’s people, places, and assets to sea-level rise, coastal storms, and the resulting flood risk (Kopp et al., 2016). An innovative approach used to inform the 2016 report was the complementary convening of a panel of practitioners to offer insights on the application of the STAP science to state and local planning and decision-making. Following the same process, the same team at Rutgers University was engaged by the State of New Jersey Department of Environmental Protection to update the 2016 report based on the most current scientific information. Similar to the inaugural work, the 2019 STAP was charged with identifying and evaluating the most current science on sea-level rise projections and changing coastal storms, considering the implications for the practices and policies of local and regional stakeholders, and providing practical options for stakeholders to incorporate science into risk-based decision processes. 
    more » « less
  2. Abstract Sea level rise (SLR) is a long‐lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process‐based models. However, risk‐averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high‐end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high‐end scenarios. High‐end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1‐2.6) relative to pre‐industrial values our high‐end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5‐8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long‐term benefits of mitigation. However, even a modest 2°C warming may cause multi‐meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high‐end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high‐end SLR. 
    more » « less
  3. The research on coastal hazards predicts substantial adverse impacts of chronic and episodic flooding on populated coastal areas. Despite the growing evidence about anticipated flood risks, many coastal communities are still not adapting. The observed disconnect between science on physical impacts and adaptation decisionmaking in part reflects stakeholders’ inability to envision the implications of these impacts on socioeconomic systems and the built environment in their jurisdictions. This inertia is particularly apparent in the discourse on flood-driven displacement and relocation. There is a lack of knowledge about direct and indirect flood impacts on community attributes and services that contribute to relocation decision-making. This study holistically evaluates the flood exposure on municipal features vital for socioeconomic stability, livelihoods, and quality of life across spatiotemporal scales. As such, it uses a more nuanced approach to relocation risk assessment than those solely focused on direct inundation impacts. It measures flood exposure of land use, land cover, and sociocultural and economic dimensions that are important drivers of relocation in selected rural and urban areas. The approach uses a 50-year floodplain to delineate populated coastal locations exposed to 2% Annual Exceedance Probability (AEP) storm surge projections adjusted for 2030, 2060, and 2090 sea level rise (SLR) scenarios. It then evaluates the potential impacts of this flood exposure on different types of land uses and critical socioeconomic assets in rural (Dorchester and Talbot Counties, Maryland, USA) and urban (Cities of Hampton, Norfolk, Portsmouth, and Virginia Beach, Virginia, USA) settings. The results show that some urban land uses, such as open space, military and mixed-use, and rural residential and commercial areas, might experience significantly more flooding. There are also notable differences in the baseline flood exposure and the anticipated rate and acceleration in the future among selected communities with significant implications for relocation planning. 
    more » « less
  4. Abstract Rising groundwater tables due to sea level rise (SLR) pose a critical but understudied threat to low‐lying coastal regions. This study uses field observations and dynamic modeling to investigate drivers of groundwater variability and to project flooding risks from emergent groundwater in Imperial Beach, California. Hourly groundwater table data from four monitoring wells (2021–2024) reveal distinct aquifer behaviors across soil types. In transmissive coastal sandy soils, groundwater levels are dominated by ocean tides, with secondary contributions from non‐tidal sea level variability and seasonal recharge. In this setting, we calibrated an empirical groundwater model to observations, and forced the model with regional SLR scenarios. We project that groundwater emergence along the low‐lying coastal road will begin by the 2060s under intermediate SLR trajectories, and escalate to near‐daily flooding by 2100. Over 20% of San Diego County's coastline shares similar transmissive sandy geology and thus similar flooding risk. Results underscore the urgency of integrating groundwater hazards into coastal resilience planning, as current adaptation strategies in Imperial Beach—focused on surface flooding—are insufficient to address infrastructure vulnerabilities from below. This study provides a transferable framework for assessing groundwater‐driven flooding in transmissive coastal aquifers, where SLR‐induced groundwater rise threatens critical infrastructure decades before permanent inundation. 
    more » « less
  5. Abstract The release of new and updated sea‐level rise (SLR) information, such as from the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports, needs to be better anticipated in coastal risk and adaptation assessments. This requires risk and adaptation assessments to be regularly reviewed and updated as needed, reflecting the new information but retaining useful information from earlier assessments. In this paper, updated guidance on the types of SLR information available is presented, including for sea‐level extremes. An intercomparison of the evolution of the headline projected ranges across all the IPCC reports show an increase from the fourth and fifth assessments to the most recent “Special Report on the Ocean and Cryosphere in a Changing Climate” assessment. IPCC reports have begun to highlight the importance of potential high‐end sea‐level response, mainly reflecting uncertainties in the Greenland/Antarctic ice sheet components, and how this might be considered in scenarios. The methods that are developed here are practical and consider coastal risk assessment, adaptation planning, and long‐term decision‐making to be an ongoing process and ensure that despite the large uncertainties, pragmatic adaptation decisions can be made. It is concluded that new sea‐level information should not be seen as an automatic reason for abandoning existing assessments, but as an opportunity to review (i) the assessment's robustness in the light of new science and (ii) the utility of proactive adaptation and planning strategies, especially over the more uncertain longer term. This article is categorized under:Assessing Impacts of Climate Change > Scenario Development and Application 
    more » « less