skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapidly Deployable MTConnect-Based Machine Tool Monitoring Systems
The amount of data that can be gathered from a machining process is often misunderstood, and even if these data are collected, they are frequently underutilized. Intelligent uses of data collected from a manufacturing operation can lead to increased productivity and lower costs. While some large-scale manufacturers have developed custom solutions for data collection from their machine tools, small- and medium-size enterprises need efficient and easily deployable methods for data collection and analysis. This paper presents three broad solutions to data collection from machine tools, all of which rely on the open-source and royalty-free MTConnect protocol: the first is a machine monitoring dashboard based on Microsoft Excel; the second is an open source solution using Python and MTConnect; and the third is a cloud-based system using Google Sheets. Time studies are performed on these systems to determine their capability to gather near real-time data from a machining process.  more » « less
Award ID(s):
1631803 1646013
PAR ID:
10066754
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 12th ASME Manufacturing Science and Engineering Conference (MSEC)
Page Range / eLocation ID:
V003T04A046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes coordinate system definition and transfer for five-axis machining of additively-manufactured preforms. In this method, a set of fiducials are attached to the temporarily attached to the part, and their location relative to the preform geometry is calibrated using a structured light scanner. Those fiducials can then be measured in the machine tool to determine the location and orientation of the part. The method is demonstrated by finish-machining a carbon fiber layup mold from an additively manufactured Invar preform. In addition to showing the coordinate transfer methods necessary to machine the part, several key challenges with machining additively-manufactured preforms are discussed and potential solutions are proposed. Unfortunately, the final part was ultimately unusable due to porosity inside the part left from the additive process. Future work will remanufacture this part while taking steps to avoid porosity and other challenges encountered. 
    more » « less
  2. Abstract Despite widespread use of radio-echo sounding (RES) in glaciology and broad distribution of processed radar products, the glaciological community has no standard software for processing impulse RES data. Dependable, fast and collection-system/platform-independent processing flows could facilitate comparison between datasets and allow full utilization of large impulse RES data archives and new data. Here, we present ImpDAR, an open-source, cross-platform, impulse radar processor and interpreter, written primarily in Python. The utility of this software lies in its collection of established tools into a single, open-source framework. ImpDAR aims to provide a versatile standard that is accessible to radar-processing novices and useful to specialists. It can read data from common commercial ground-penetrating radars (GPRs) and some custom-built RES systems. It performs all the standard processing steps, including bandpass and horizontal filtering, time correction for antenna spacing, geolocation and migration. After processing data, ImpDAR's interpreter includes several plotting functions, digitization of reflecting horizons, calculation of reflector strength and export of interpreted layers. We demonstrate these capabilities on two datasets: deep (~3000 m depth) data collected with a custom (3 MHz) system in northeast Greenland and shallow (<100 m depth, 500 MHz) data collected with a commercial GPR on South Cascade Glacier in Washington. 
    more » « less
  3. Smart ear-worn devices (called earables) are being equipped with various onboard sensors and algorithms, transforming earphones from simple audio transducers to multi-modal interfaces making rich inferences about human motion and vital signals. However, developing sensory applications using earables is currently quite cumbersome with several barriers in the way. First, time-series data from earable sensors incorporate information about physical phenomena in complex settings, requiring machine-learning (ML) models learned from large-scale labeled data. This is challenging in the context of earables because large-scale open-source datasets are missing. Secondly, the small size and compute constraints of earable devices make on-device integration of many existing algorithms for tasks such as human activity and head-pose estimation difficult. To address these challenges, we introduce Auritus, an extendable and open-source optimization toolkit designed to enhance and replicate earable applications. Auritus serves two primary functions. Firstly, Auritus handles data collection, pre-processing, and labeling tasks for creating customized earable datasets using graphical tools. The system includes an open-source dataset with 2.43 million inertial samples related to head and full-body movements, consisting of 34 head poses and 9 activities from 45 volunteers. Secondly, Auritus provides a tightly-integrated hardware-in-the-loop (HIL) optimizer and TinyML interface to develop lightweight and real-time machine-learning (ML) models for activity detection and filters for head-pose tracking. To validate the utlity of Auritus, we showcase three sample applications, namely fall detection, spatial audio rendering, and augmented reality (AR) interfacing. Auritus recognizes activities with 91% leave 1-out test accuracy (98% test accuracy) using real-time models as small as 6-13 kB. Our models are 98-740x smaller and 3-6% more accurate over the state-of-the-art. We also estimate head pose with absolute errors as low as 5 degrees using 20kB filters, achieving up to 1.6x precision improvement over existing techniques. We make the entire system open-source so that researchers and developers can contribute to any layer of the system or rapidly prototype their applications using our dataset and algorithms. 
    more » « less
  4. During machining, kinetic energy is imparted to a workpiece to remove material. The integrity of the machined surface, which depends on the energy transfer, affects the quality and performance of the product, therefore needs to be quantified. Prior studies have indicated the potential of using machining power, or the power consumption at the tool-chip interface, as a process signature for predicting machined surface integrity. However, direct measurement of machining power is constrained by the availability of special equipment and the associated cost. To address this gap, this paper presents a machine learning-based method for machining power prediction through multi-sensor fusion and sequence-to-sequence translation from acoustic and vibration signals, which represent portions of the in-situ kinetic energy dissipation, to the machining power signal as a process signature. Specifically, a neural network architecture is developed to separately translate the acoustic and vibration signals to corresponding machining power signals. The two predicted power signals are subsequently fused to arrive at a unified power signal prediction. To check for spurious decision logic, the sensor fusion model is interpreted using integrated gradients to reveal temporal regions of the input data which have the most influence on the machining power prediction accuracy of the fusion model. Systematic cutting experiments performed on a lathe using 1018 steel have shown that the developed sensor fusion method for process signature prediction can successfully map machine acoustics to power consumption with 5.6% error, tool vibration to power consumption with 8.2% error, and acoustics and vibration, jointly, to power with 2.5% error. Model parameter interpretation reveals that the vibration signal is more influential on the machining power prediction result than the acoustic signal, but that overall model accuracy is diminished if only the vibration signal is used. 
    more » « less
  5. We present an open-source wireless network and data management system for collecting and storing indoor environmental measurements and perceived comfort via participatory sensing in commercial buildings. The system, called a personal comfort and indoor environment measurement (PCIEM) platform, consists of several devices placed in office occupants’ work areas, a wireless network, and a remote database to store the data. Each device, called a PCFN (personal comfort feedback node), contains a touchscreen through which the occupant can provide feedback on their perceived comfort on-demand, and several sensors to collect environmental data. The platform is designed to be part of an indoor climate control system that can enable personalized comfort control in real-time. We describe the design, prototyping, and initial deployment of a small number of PCFNs in a commercial building. We also provide lessons learned from these steps. Application of the data collected from the PCFNs for modeling and real-time control will be reported in future work. We use hardware components that are commercial and off-the-shelf, and our software design is based on open-source tools that are freely and publicly available to enable repeatability. 
    more » « less