skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated Multi-User Analysis of Virtualized Voxel-Based CAM on Shared GPUs
Computer-aided manufacturing (CAM) software allows for the generation of toolpaths for computer numerical control (CNC) machine tools and enables the creation of sophisticated parts that would not otherwise be possible with conventional manual machining methods. Voxel-based CAM is a recent approach to toolpath planning that enables creation of paths for parts that would be difficult to create with traditional CAM software. However, the use of voxel-based CAM necessitates the presence of powerful hardware (specifically, graphics processing units) in order to perform the necessary computations for creating toolpaths. The concepts of virtualization and desktop-as-a-service offer a promising solution to this challenge, as they allow for many users to access computer hardware that is hosted on a single server. This work investigates the performance impact caused by multiple simultaneous users on voxel-based CAM deployed in a virtualized environment. The implementation of a Python application for multi-user simulation on the virtualized platform is described and timing results gathered from a sequence of simulations are presented and analyzed as the number of users is varied. The results from these simulations demonstrate consistent operational times for a low number of simultaneous users before a period of high performance variation due to resource sharing.  more » « less
Award ID(s):
1631803 1646013
PAR ID:
10066757
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 13th ASME Manufacturing Science and Engineering Conference (MSEC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The use of computer-aided manufacturing (CAM) software is essential in the rapid production of high-quality computer numerical control (CNC) machining toolpaths for complex parts. Typical CAM software relies on analytical representations of part geometry, where curves and surfaces are described by parametric functions. This paper proposes the use of a novel way to represent part geometry known as a voxel model. A voxel model uses a three-dimensional array of small cubes to represent a part volume; these cubes, or voxels, are the three-dimensional analog of two-dimensional pixels in an image. The use of voxels for a CAM application enables higher surface complexity, simplified collision checking, and more robust analysis of material removal than would be possible with typical parametric CAM. The unique capabilities of the voxel-based CAM approach described in this paper enable rapid production of high-quality 5-axis toolpaths for machining complex parts, such as the centrifugal compressor assembly that is presented in this work. 
    more » « less
  2. Direct digital manufacturing (DDM) is the creation of a physical part directly from a computer-aided design (CAD) model with minimal process planning and is typically applied to additive manufacturing (AM) processes to fabricate complex geometry. AM is preferred for DDM because of its minimal user input requirements; as a result, users can focus on exploiting other advantages of AM, such as the creation of intricate mechanisms that require no assembly after fabrication. Such assembly free mechanisms can be created using DDM during a single build process. In contrast, subtractive manufacturing (SM) enables the creation of higher strength parts that do not suffer from the material anisotropy inherent in AM. However, process planning for SM is more difficult than it is for AM due to geometric constraints imposed by the machining process; thus, the application of SM to the fabrication of assembly free mechanisms is challenging. This research describes a voxel-based computer-aided manufacturing (CAM) system that enables direct digital subtractive manufacturing (DDSM) of an assembly free mechanism. Process planning for SM involves voxel-by-voxel removal of material in the same way that an AM process consists of layer-by-layer addition of material. The voxelized CAM system minimizes user input by automatically generating toolpaths based on an analysis of accessible material to remove for a certain clearance in the mechanism's assembled state. The DDSM process is validated and compared to AM using case studies of the manufacture of two assembly free ball-in-socket mechanisms. 
    more » « less
  3. Over the past decades, the major objectives of computer design have been to improve performance and to reduce cost, energy consumption, and size, while security has remained a secondary concern. Meanwhile, malicious attacks have rapidly grown as the number of Internet-connected devices, ranging from personal smart embedded systems to large cloud servers, have been increasing. Traditional antivirus software cannot keep up with the increasing incidence of these attacks, especially for exploits targeting hardware design vulnerabilities. For example, as DRAM process technology scales down, it becomes easier for DRAM cells to electrically interact with each other. For instance, in Rowhammer attacks, it is possible to corrupt data in nearby rows by reading the same row in DRAM. As Rowhammer exploits a computer hardware weakness, no software patch can completely fix the problem. Similarly, there is no efficient software mitigation to the recently reported attack Spectre. The attack exploits microarchitectural design vulnerabilities to leak protected data through side channels. In general, completely fixing hardware-level vulnerabilities would require a redesign of the hardware which cannot be backported. In this paper, we demonstrate that by monitoring deviations in microarchitectural events such as cache misses, branch mispredictions from existing CPU performance counters, hardware-level attacks such as Rowhammer and Spectre can be efficiently detected during runtime with promising accuracy and reasonable performance overhead using various machine learning classifiers. 
    more » « less
  4. A central challenge in machine learning deployment is maintaining accurate and updated models as the deployment environment changes over time. We present a hardware/software framework for simultaneous training and inference for monocular depth estimation on edge devices. Our proposed framework can be used as a hardware/software co-design tool that enables continual and online federated learning on edge devices. Our results show real-time training and inference performance, demonstrating the feasibility of online learning on edge devices. 
    more » « less
  5. Abstract Automated manufacturing feature recognition is a crucial link between computer-aided design and manufacturing, facilitating process selection and other downstream tasks in computer-aided process planning. While various methods such as graph-based, rule-based, and neural networks have been proposed for automatic feature recognition, they suffer from poor scalability or computational inefficiency. Recently, voxel-based convolutional neural networks have shown promise in solving these challenges but incur a tradeoff between computational cost and feature resolution. This paper investigates a computationally efficient sparse voxel-based convolutional neural network for manufacturing feature recognition, specifically, an octree-based sparse voxel convolutional neural network. This model is trained on a large-scale manufacturing feature dataset, and its performance is compared to a voxel-based feature recognition model (FeatureNet). The results indicate that the octree-based model yields higher feature recognition accuracy (99.5% on the test dataset) with 44% lower graphics processing unit (GPU) memory consumption than a voxel-based model of comparable resolution. In addition, increasing the resolution of the octree-based model enables recognition of finer manufacturing features. These results indicate that a sparse voxel-based convolutional neural network is a computationally efficient deep learning model for manufacturing feature recognition to enable process planning automation. Moreover, the sparse voxel-based neural network demonstrated comparable performance to a boundary representation-based feature recognition neural network, achieving similar accuracy in single-feature recognition without having access to the exact 3D shape descriptors. 
    more » « less