The rapid growth in technology and wide use of internet has increased smart applications such as intelligent transportation control system, and Internet of Things, which heavily rely on an efficient and reliable connectivity network. To overcome high bandwidth work load on the network, as well as minimize latency for real-time applications, the computation can be moved from the central cloud to a distributed edge cloud. The edge computing benefits various smart applications that uses distributed network for data analytics and services. Different from the existing cloud management solutions, edge computing needs to move cloud management services towards distributed heterogeneous edge nodes for multi-tenant user applications. However, existing cloud management services do not offer remote deployment of multi-tenant user applications on the cloud of edge nodes. In this paper, we propose a practical edge cloud software framework for deploying multi-tenant distributed smart applications. Having multiple distributed end nodes, auto discovery of all active end nodes is required for deploying multi-tenant user applications. However, existing cloud solutions require either private network or fixed IP address, which is not achievable for the distributed edge nodes. Most of the edge nodes connected through the public internet without fixed IP, and some of them even connect through IEEE 802.15 based sensor networks. We propose to build a software platform to manage the distributed edge nodes as well as support services to deploy and launch isolated, multi-tenant user applications through a lightweight container. We propose an architectural solution to remotely access edge cloud management services through intermittent internet connections. We open sourced our whole set of software solutions, and analyzed the major performance metrics of the edge cloud platform.
more »
« less
Hardening the Security of Multi-Access Edge Computing through Bio-Inspired VM Introspection
The extreme bandwidth and performance of 5G mobile networks changes the way we develop and utilize digital services. Within a few years, 5G will not only touch technology and applications, but dramatically change the economy, our society and individual life. One of the emerging technologies that enables the evolution to 5G by bringing cloud capabilities near to the end users is Edge Computing or also known as Multi-Access Edge Computing (MEC) that will become pertinent towards the evolution of 5G. This evolution also entails growth in the threat landscape and increase privacy in concerns at different application areas, hence security and privacy plays a central role in the evolution towards 5G. Since MEC application instantiated in the virtualized infrastructure, in this paper we present a distributed application that aims to constantly introspect multiple virtual machines (VMs) in order to detect malicious activities based on their anomalous behavior. Once suspicious processes detected, our IDS in real-time notifies system administrator about the potential threat. Developed software is able to detect keyloggers, rootkits, trojans, process hiding and other intrusion artifacts via agent-less operation, by operating remotely or directly from the host machine. Remote memory introspection means no software to install, no notice to malware to evacuate or destroy data. Experimental results of remote VMI on more than 50 different malicious code demonstrate average anomaly detection rate close to 97%. We have established wide testbed environment connecting networks of two universities Kyushu Institute of Technology and The City College of New York through secure GRE tunnel. Conducted experiments on this testbed deliver high response time of the proposed system.
more »
« less
- NSF-PAR ID:
- 10301146
- Date Published:
- Journal Name:
- Big data and cognitive computing
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2504-2289
- Page Range / eLocation ID:
- 50
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)As organizations drastically expand their usage of collaborative systems and multi-user applications during this period of mass remote work, it is crucial to understand and manage the risks that such platforms may introduce. Improperly or carelessly deployed and configured systems hide security threats that can impact not only a single organization, but the whole economy. Cloud-based architecture is used in many collaborative systems, such as audio/video conferencing, collaborative document sharing/editing, distance learning and others. Therefore, it is important to understand that safety risk can be triggered by attacks on remote servers and confidential information might be compromised. In this paper, we present an AI powered application that aims to constantly introspect multiple virtual servers in order to detect malicious activities based on their anomalous behavior. Once the suspicious process(es) detected, the application in real-time notifies system administrator about the potential threat. Developed software is able to detect user space based keyloggers, rootkits, process hiding and other intrusion artifacts via agent-less operation, by operating directly from the host machine. Remote memory introspection means no software to install, no notice to malware to evacuate or destroy data. Conducted experiments on more than twenty different types of malicious applications provide evidence of high detection accuracymore » « less
-
Abstract: With the proliferation of Dynamic Spectrum Access (DSA), Internet of Things (IoT), and Mobile Edge Computing (MEC) technologies, various methods have been proposed to deduce key network and user information in cellular systems, such as available cell bandwidths, as well as user locations and mobility. Not only is such information dominated by cellular networks of vital significance on other systems co-located spectrum-wise and/or geographically, but applications within cellular systems can also benefit remarkably from inferring such information, as exemplified by the endeavours made by video streaming to predict cell bandwidth. Hence, we are motivated to develop a new tool to uncover as much information used to be closed to outsiders or user devices as possible with off-the-shelf products. Given the wide-spread deployment of LTE and its continuous evolution to 5G, we design and implement U-CIMAN, a client-side system to accurately UnCover as much Information in Mobile Access Networks as allowed by LTE encryption. Among the many potential applications of U-CIMAN, we highlight one use case of accurately measuring the spectrum tenancy of a commercial LTE cell. Besides measuring spectrum tenancy in unit of resource blocks, U-CIMAN discovers user mobility and traffic types associated with spectrum usage through decoded control messages and user data bytes. We conduct 4-month detailed accurate spectrum measurement on a commercial LTE cell, and the observations include the predictive power of Modulation and Coding Scheme on spectrum tenancy, and channel off-time bounded under 10 seconds, to name a few.more » « less
-
The prevailing network security measures are often implemented on proprietary appliances that are deployed at fixed network locations with constant capacity. Such a rigid deployment is sometimes necessary, but undermines the flexibility of security services in meeting the demands of emerging applications, such as augmented/virtual reality, autonomous driving, and 5G for industry 4.0, which are provoked by the evolution of connected and smart devices, their heterogeneity, and integration with cloud and edge computing infrastructures. To loosen these rigid security deployments, in this paper, we propose a data-centric SECurity-as-a-Service (SECaaS) framework for elastic deployment and provisioning of security services at the Multi-Access Edge Computing (MEC) infrastructure. In particular, we discuss three security services that are suitable for edge deployment: (i) an intrusion detection and prevention system (IDPS), (ii) an access control enforcement system (ACE), and (iii) a communication anonymization service (CA). We benchmark the common security microservices along with the design and implementation of a proof of concept communication anonymization application.more » « less
-
With the explosion of intelligent and latency-sensitive applications such as AR/VR, remote health and autonomous driving, mobile edge computing (MEC) has emerged as a promising solution to mitigate the high end-to-end latency of mobile cloud computing (MCC). However, the edge servers have significantly less computing capability compared to the resourceful central cloud. Therefore, a collaborative cloud-edge-local offloading scheme is necessary to accommodate both computationally intensive and latency-sensitive mobile applications. The coexistence of central cloud, edge servers and the mobile device (MD), forming a multi-tiered heterogeneous architecture, makes the optimal application deployment very challenging especially for multi-component applications with component dependencies. This paper addresses the problem of energy and latency efficient application offloading in a collaborative cloud-edgelocal environment. We formulate a multi-objective mixed integer linear program (MILP) with the goal of minimizing the systemwide energy consumption and application end-to-end latency. An approximation algorithm based on LP relaxation and rounding is proposed to address the time complexity. We demonstrate that our approach outperforms existing strategies in terms of application request acceptance ratio, latency and system energy consumption.more » « less