skip to main content


Title: Implementing Push-Pull Efficiently in GraphBLAS
We factor Beamer's push-pull, also known as direction-optimized breadth-first-search (DOBFS) into 3 separable optimizations, and analyze them for generalizability, asymptotic speedup, and contribution to overall speedup. We demonstrate that masking is critical for high performance and can be generalized to all graph algorithms where the sparsity pattern of the output is known a priori. We show that these graph algorithm optimizations, which together constitute DOBFS, can be neatly and separably described using linear algebra and can be expressed in the GraphBLAS linear-algebra-based framework. We provide experimental evidence that with these optimizations, a DOBFS expressed in a linear-algebra-based graph framework attains competitive performance with state-of-the-art graph frameworks on the GPU and on a multi-threaded CPU, achieving 101 GTEPS on a Scale 22 RMAT graph.  more » « less
Award ID(s):
1629657
NSF-PAR ID:
10066979
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the International Conference on Parallel Processing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which allow graph algorithms to be expressed in a performant, succinct, composable, and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction.Exploiting output sparsityallows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in “GraphBLAST”, the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse andGBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework ,while offering a simpler and more concise programming model. 
    more » « less
  2. Graph processing recently received intensive interests in light of a wide range of needs to understand relationships. It is well-known for the poor locality and high memory bandwidth requirement. In conventional architectures, they incur a significant amount of data movements and energy consumption which motivates several hardware graph processing accelerators. The current graph processing accelerators rely on memory access optimizations or placing computation logics close to memory. Distinct from all existing approaches, we leverage an emerging memory technology to accelerate graph processing with analog computation. This paper presents GRAPHR, the first ReRAM-based graph processing accelerator. GRAPHR follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. The analog computation is suitable for graph processing because: 1) The algorithms are iterative and could inherently tolerate the imprecision; 2) Both probability calculation (e.g., PageRank and Collaborative Filtering) and typical graph algorithms involving integers (e.g., BFS/SSSP) are resilient to errors. The key insight of GRAPHR is that if a vertex program of a graph algorithm can be expressed in sparse matrix vector multiplication (SpMV), it can be efficiently performed by ReRAM crossbar. We show that this assumption is generally true for a large set of graph algorithms. GRAPHR is a novel accelerator architecture consisting of two components: memory ReRAM and graph engine (GE). The core graph computations are performed in sparse matrix format in GEs (ReRAM crossbars). The vector/matrix-based graph computation is not new, but ReRAM offers the unique opportunity to realize the massive parallelism with unprecedented energy efficiency and low hardware cost. With small subgraphs processed by GEs, the gain of performing parallel operations overshadows the wastes due to sparsity. The experiment results show that GRAPHR achieves a 16.01X (up to 132.67X) speedup and a 33.82X energy saving on geometric mean compared to a CPU baseline system. Compared to GPU, GRAPHR achieves 1.69X to 2.19X speedup and consumes 4.77X to 8.91X less energy. GRAPHR gains a speedup of 1.16X to 4.12X, and is 3.67X to 10.96X more energy efficiency compared to PIM-based architecture. 
    more » « less
  3. Sparse linear algebra is an important kernel in many different applications. Among various sparse general matrix-matrix multiplication (SpGEMM) algorithms, Gustavson’s column-wise SpGEMM has good locality when reading input matrix and can be easily parallelized by distributing the computation of different columns of an output matrix to different processors. However, the sparse accumulation (SPA) step in column-wise SpGEMM, which merges partial sums from each of the multiplications by the row indices, is still a performance bottleneck. The state-of-the-art software implementation uses a hash table for partial sum search in the SPA, which makes SPA the largest contributor to the execution time of SpGEMM. There are three reasons that cause the SPA to become the bottleneck: (1) hash probing requires data-dependent branches that are difficult for a branch predictor to predict correctly; (2) the accumulation of partial sum is dependent on the results of the hash probing, which makes it difficult to hide the hash probing latency; and (3) hash collision requires time-consuming linear search and optimizations to reduce these collisions require an accurate estimation of the number of non-zeros in each column of the output matrix. This work proposes ASA architecture to accelerate the SPA. ASA overcomes the challenges of SPA by (1) executing the partial sum search and accumulate with a single instruction through ISA extension to eliminate data-dependent branches in hash probing, (2) using a dedicated on-chip cache to perform the search and accumulation in a pipelined fashion, (3) relying on the parallel search capability of a set-associative cache to reduce search latency, and (4) delaying the merging of overflowed entries. As a result, ASA achieves an average of 2.25× and 5.05× speedup as compared to the state-of-the-art software implementation of a Markov clustering application and its SpGEMM kernel, respectively. As compared to a state-of-the-art hashing accelerator design, ASA achieves an average of 1.95× speedup in the SpGEMM kernel. 
    more » « less
  4. Existing GPU graph analytics frameworks are typically built from specialized, bottom-up implementations of graph operators that are customized to graph computation. In this work we describe Mini-Gunrock, a lightweight graph analytics framework on the GPU. Unlike existing frameworks, Mini-Gunrock is built from graph operators implemented with generic transform-based data-parallel primitives. Using this method to bridge the gap between programmability and high performance for GPU graph analytics, we demonstrate operator performance on scale-free graphs with an average 1.5x speedup compared to Gunrock's corresponding operator performance. Mini-Gunrock's graph operators, optimizations, and applications code have 10x smaller code size and comparable overall performance vs. Gunrock. 
    more » « less
  5. Unlike dense linear algebra applications, graph applications typically suffer from poor performance because of 1) inefficient utilization of memory systems through random memory accesses to graph data, and 2) overhead of executing atomic operations. Hence, there is a rapid growth in improving both software and hardware platforms to address the above challenges. One such improvement in the hardware platform is a realization of the Emu system, a thread migratory and near-memory processor. In the Emu system, a thread responsible for computation on a datum is automatically migrated over to a node where the data resides without any intervention from the programmer. The idea of thread migrations is very well suited to graph applications as memory accesses of the applications are irregular. However, thread migrations can hurt the performance of graph applications if overhead from the migrations dominates benefits achieved through the migrations. In this preliminary study, we explore two high-level compiler optimizations, i.e., loop fusion and edge flipping, and one low-level compiler transformation leveraging hardware support for remote atomic updates to address overheads arising from thread migration, creation, synchronization, and atomic operations. We performed a preliminary evaluation of these compiler transformations by manually applying them on three graph applications over a set of RMAT graphs from Graph500.---Conductance, Bellman-Ford's algorithm for the single-source shortest path problem, and Triangle Counting. Our evaluation targeted a single node of the Emu hardware prototype, and has shown an overall geometric mean reduction of 22.08% in thread migrations. 
    more » « less