Tree species appear to prefer distinct climatic conditions, but the true nature of these preferences is obscured by species interactions and dispersal, which limit species’ ranges. We quantified realized and potential thermal niches of 188 North American tree species to conduct a continental-scale test of the architecture of niches. We found strong and consistent evidence that species occurring at thermal extremes occupy less than three-quarters of their potential niches, and species’ potential niches overlap at a mean annual temperature of ~12°C. These results clarify the breadth of thermal tolerances of temperate tree species and support the centrifugal organization of thermal niches. Accounting for the nonrealized components of ecological niches will advance theory and prediction in global change ecology.
more »
« less
High-dimensional change-point detection under sparse alternatives
We consider the problem of detecting a change in mean in a sequence of high-dimensional Gaussian vectors. The change in mean may be occurring simultaneously in an unknown subset components. We propose a hypothesis test to detect the presence of a change-point and establish the detection boundary in different regimes under the assumption that the dimension tends to infinity and the length of the sequence grows with the dimension. A remarkable feature of the proposed test is that it does not require any knowledge of the subset of components in which the change in mean is occurring and yet automatically adapts to yield optimal rates of convergence over a wide range of statistical regimes.
more »
« less
- Award ID(s):
- 1740551
- PAR ID:
- 10066993
- Date Published:
- Journal Name:
- Annals of statistics
- Volume:
- 46
- Issue:
- 5
- ISSN:
- 0090-5364
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The quickest change detection problem is studied in a general context of monitoring a large number K of data streams in sensor networks when the “trigger event” may affect different sensors differently. In particular, the occurring event might affect some unknown, but not necessarily all, sensors and also could have an immediate or delayed impact on those affected sensors. Motivated by censoring sensor networks, we develop scalable communication-efficient schemes based on the sum of those local cumulative sum (CUSUM) statistics that are “large” under either hard, soft, or order thresholding rules. Moreover, we provide the detection delay analysis of these communication-efficient schemes in the context of monitoring K independent data streams and establish their asymptotic statistical properties under two regimes: one is the classical asymptotic regime when the dimension K is fixed, and the other is the modern asymptotic regime when the dimension K goes to infinity: Our theoretical results illustrate the deep connections between communication efficiency and statistical efficiency.more » « less
-
Iakoucheva, Lilia M. (Ed.)The complexity of biological processes such as cell differentiation is reflected in dynamic transitions between cellular states. Trajectory inference arranges the states into a progression using methodologies propelled by single-cell biology. However, current methods, all returning a best trajectory, do not adequately assess statistical significance of noisy patterns, leading to uncertainty in inferred trajectories. We introduce a tree dimension test for trajectory presence in multivariate data by a dimension measure of Euclidean minimum spanning tree, a test statistic, and a null distribution. Computable in linear time to tree size, the tree dimension measure summarizes the extent of branching more effectively than globally insensitive number of leaves or tree diameter indifferent to secondary branches. The test statistic quantifies trajectory presence and its null distribution is estimated under the null hypothesis of no trajectory in data. On simulated and real single-cell datasets, the test outperformed the intuitive number of leaves and tree diameter statistics. Next, we developed a measure for the tissue specificity of the dynamics of a subset, based on the minimum subtree cover of the subset in a minimum spanning tree. We found that tissue specificity of pathway gene expression dynamics is conserved in human and mouse development: several signal transduction pathways including calcium and Wnt signaling are most tissue specific, while genetic information processing pathways such as ribosome and mismatch repair are least so. Neither the tree dimension test nor the subset specificity measure has any user parameter to tune. Our work opens a window to prioritize cellular dynamics and pathways in development and other multivariate dynamical systems.more » « less
-
Abstract Cumulative sum (CUSUM) statistics are widely used in the change point inference and identification. For the problem of testing for existence of a change point in an independent sample generated from the mean-shift model, we introduce a Gaussian multiplier bootstrap to calibrate critical values of the CUSUM test statistics in high dimensions. The proposed bootstrap CUSUM test is fully data dependent and it has strong theoretical guarantees under arbitrary dependence structures and mild moment conditions. Specifically, we show that with a boundary removal parameter the bootstrap CUSUM test enjoys the uniform validity in size under the null and it achieves the minimax separation rate under the sparse alternatives when the dimension p can be larger than the sample size n. Once a change point is detected, we estimate the change point location by maximising the ℓ∞-norm of the generalised CUSUM statistics at two different weighting scales corresponding to covariance stationary and non-stationary CUSUM statistics. For both estimators, we derive their rates of convergence and show that dimension impacts the rates only through logarithmic factors, which implies that consistency of the CUSUM estimators is possible when p is much larger than n. In the presence of multiple change points, we propose a principled bootstrap-assisted binary segmentation (BABS) algorithm to dynamically adjust the change point detection rule and recursively estimate their locations. We derive its rate of convergence under suitable signal separation and strength conditions. The results derived in this paper are non-asymptotic and we provide extensive simulation studies to assess the finite sample performance. The empirical evidence shows an encouraging agreement with our theoretical results.more » « less
-
Abstract Extensive ecological research has investigated extreme climate events or long‐term changes in average climate variables, but changes in year‐to‐year (interannual) variability may also cause important biological responses, even if the mean climate is stable. The environmental stochasticity that is a hallmark of climate variability can trigger unexpected biological responses that include tipping points and state transitions, and large differences in weather between consecutive years can also propagate antecedent effects, in which current biological responses depend on responsiveness to past perturbations. However, most studies to date cannot predict ecological responses to rising variance because the study of interannual variance requires empirical platforms that generate long time series. Furthermore, the ecological consequences of increases in climate variance could depend on the mean climate in complex ways; therefore, effective ecological predictions will require determining responses to both nonstationary components of climate distributions: the mean and the variance. We introduce a new design to resolve the relative importance of, and interactions between, a drier mean climate and greater climate variance, which are dual components of ongoing climate change in the southwestern United States. The Mean × Variance Experiment (MVE) adds two novel elements to prior field infrastructure methods: (1) factorial manipulation of variance together with the climate mean and (2) the creation of realistic, stochastic precipitation regimes. Here, we demonstrate the efficacy of the experimental design, including sensor networks and PhenoCams to automate monitoring. We replicated MVE across ecosystem types at the northern edge of the Chihuahuan Desert biome as a central component of the Sevilleta Long‐Term Ecological Research Program. Soil sensors detected significant treatment effects on both the mean and interannual variability in soil moisture, and PhenoCam imagery captured change in vegetation cover. Our design advances field methods to newly compare the sensitivities of populations, communities, and ecosystem processes to climate mean × variance interactions.more » « less
An official website of the United States government

