Abstract Dynamic covalent chemistry (DCC) crosslinks can form hydrogels with tunable mechanical properties permissive to injectability and self‐healing. However, not all hydrogels with transient crosslinks are easily extrudable. For this reason, two additional design parameters must be considered when formulating DCC‐crosslinked hydrogels: 1) degree of functionalization (DoF) and 2) polymer molecular weight (MW). To investigate these parameters, hydrogels comprised of two recombinant biopolymers: 1) a hyaluronic acid (HA) modified with benzaldehyde and 2) an elastin‐like protein (ELP) modified with hydrazine (ELP‐HYD), are formulated. Several hydrogel families are synthesized with distinct HA MW and DoF while keeping the ELP‐HYD component constant. The resulting hydrogels have a range of stiffnesses,G′ ≈ 10–1000 Pa, and extrudability, which is attributed to the combined effects of DCC crosslinks and polymer entanglements. In general, lower MW formulations require lower forces for injectability, regardless of stiffness. Higher DoF formulations exhibit more rapid self‐healing. Gel extrusion through a cannula (2 m length, 0.25 mm diameter) demonstrates the potential for minimally invasive delivery for future biomedical applications. In summary, this work highlights additional parameters that influence the injectability and network formation of DCC‐crosslinked hydrogels and aims to guide future design of injectable hydrogels.
more »
« less
Effect of ionic strength on shear-thinning nanoclay–polymer composite hydrogels
Nanoclay–polymer shear-thinning composites are designed for a broad range of biomedical applications, including tissue engineering, drug delivery, and additive biomanufacturing. Despite the advances in clay–polymer injectable nanocomposites, colloidal properties of layered silicates are not fully considered in evaluating the in vitro performance of shear-thinning biomaterials (STBs). Here, as a model system, we investigate the effect of ions on the rheological properties and injectability of nanoclay–gelatin hydrogels to understand their behavior when prepared in physiological media. In particular, we study the effect of sodium chloride (NaCl) and calcium chloride (CaCl 2 ), common salts in phosphate buffered saline (PBS) and cell culture media ( e.g. , Dulbecco's Modified Eagle's Medium, DMEM), on the structural organization of nanoclay (LAPONITE® XLG-XR, a hydrous lithium magnesium sodium silicate)-polymer composites, responsible for the shear-thinning properties and injectability of STBs. We show that the formation of nanoclay–polymer aggregates due to the ion-induced shrinkage of the diffuse double layer and eventually the liquid–solid phase separation decrease the resistance of STB against elastic deformation, decreasing the yield stress. Accordingly, the stress corresponding to the onset of structural breakdown (yield zone) is regulated by the ion type and concentration. These results are independent of the STB composition and can directly be translated into the physiological conditions. The exfoliated nanoclay undergoes visually undetectable aggregation upon mixing with gelatin in physiological media, resulting in heterogeneous hydrogels that phase separate under stress. This work provides fundamental insights into nanoclay–polymer interactions in physiological environments, paving the way for designing clay-based injectable biomaterials.
more »
« less
- Award ID(s):
- 1705852
- PAR ID:
- 10067122
- Date Published:
- Journal Name:
- Biomaterials Science
- Volume:
- 6
- Issue:
- 8
- ISSN:
- 2047-4830
- Page Range / eLocation ID:
- 2073 to 2083
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polymer‐clay nanocomposites (PCNs) are commonly applied as multi‐functional structural materials with exceptional thermomechanical properties, while maintaining the characteristics of lightweight and optical clarity. In this study, building upon previously developed coarse‐grained (CG) models for nanoclay and poly (methyl methacrylate) (PMMA), we employ molecular dynamics (MD) simulations to systematically investigate the thermomechanical properties of PCNs when arranged in stacked configurations. Incorporating stacked clay nanofillers into a polymer matrix, we systematically conduct shear and tensile simulations to investigate the influences of variations in weight percentage, system temperature, and nanoclay size on the thermomechanical properties of PCNs at a fundamental level. The weight percentage of nanoclay in nanocomposites proves to have a significant influence on both the shear and Young's modulus (e.g., the addition of 10 Wt% nanoclay leads to an increase of 32.6% in the Young's modulus), with each exhibiting greater mechanical strength in the in‐plane direction compared to the out‐of‐plane direction, and the disparity between these two directions further widens with an increase in the weight percentage of nanoclay. Furthermore, the increase in the size of nanoclay contributes to an overall modulus enhancement in the composite while the growth reaches a saturation point after a certain threshold of about 10 nm. Our simulation results indicate that the overall dynamics of PMMA are suppressed due to the strong interactions between nanoclay and PMMA, where the confinement effect on local segmental dynamics of PMMA decays from the nanoclay‐polymer interface to the polymer matrix. Our findings provide valuable molecular‐level insights into microstructural and dynamical features of PCNs under deformation, emphasizing the pivotal role of clay‐polymer interface in influencing the thermomechanical properties of the composite materials. HighlightsCG modeling is performed to explore the thermomechanical behavior of PCN.Effects of nanoclay weight percentage and size on modulus are studied.Interface leads to nanoconfinement effect onTgand molecular stiffness.Correlations between molecular stiffness and modulus are identified.Simulations show spatial variation of dynamical heterogeneity.more » « less
-
ABSTRACT Hydrogels have been widely used in many applications from tissue engineering to drug delivery systems. For both tissue engineering and drug delivery, the mechanical properties are important because they would affect cell-materials interactions and injectability of drugs encapsulated in hydrogel carriers. Therefore, it is important to study the mechanical properties of these hydrogels, particularly at physiological temperature (37°C). This study adopted strain sweep and frequency sweep rotational rheological tests to investigate the rheological characteristics of various tissue engineering relevant hydrogels with different concentrations at 37°C. These hydrogels include alginate, RGD-alginate, and copolymerized collagen/alginate/fibrin. It has revealed that the addition of RGD has negligible effect on the elastic modulus and viscosity of alginate. Alginate gels have demonstrated shear thinning behavior which indicates that they are suitable candidates as carriers for cells or drug delivery. The addition of collagen and fibrin would reinforce the mechanical properties of alginate which makes it a strong scaffold material.more » « less
-
Abstract Three-dimensional (3D) bioprinting has emerged as a powerful engineering approach for various tissue engineering applications, particularly for the development of 3D cellular structures with unique mechanical and/or biological properties. For the jammed gelatin microgel-gelatin solution composite bioink, comprising a discrete phase of microgels (enzymatically gelled gelatin microgels) and a cross-linkable continuous gelatin precursor solution-based phase containing transglutaminase (TG), its rheological properties and printability change gradually due to the TG enzyme-induced cross-linking process. The objective of this study is to establish a direct mapping between the printability of the gelatin microgel-gelatin solution based cross-linkable composite bioink and the TG concentration and cross-linking time, respectively. Due to the inclusion of TG in the composite bioink, the bioink starts cross-linking once prepared and is usually prepared right before a printing process. Herein, the bioink printability is evaluated based on the three metrics: injectability, feature formability, and process-induced cell injury. In this study, the rheological properties such as the storage modulus and viscosity have been first systematically investigated and predicted at different TG concentrations and times during the cross-linking process using the first-order cross-linking kinetics model. The storage modulus and viscosity have been satisfactorily modeled as exponential functions of the TG concentration and time with an experimentally calibrated cross-linking kinetic rate constant. Furthermore, the injectability, feature formability, and process-induced cell injury have been successfully correlated to the TG concentration and cross-linking time via the storage modulus, viscosity, and/or process-induced shear stress. By combing the good injectability, good feature formability, and satisfactory cell viability zones, a good printability zone (1.65, 0.61, and 0.31 h for the composite bioinks with 1.00, 2.00, and 4.00% w/v TG, respectively) has been established during the printing of mouse fibroblast-based 2% gelatin B microgel-3% gelatin B solution composite bioink. This printability zone approach can be extended to the use of other cross-linkable bioinks for bioprinting applications.more » « less
-
Abstract Clay nanomaterials are an emerging class of 2D biomaterials of interest due to their atomically thin layered structure, charged characteristics, and well‐defined composition. Synthetic nanoclays are plate‐like polyions composed of simple or complex salts of silicic acids with a heterogeneous charge distribution and patchy interactions. Due to their biocompatible characteristics, unique shape, high surface‐to‐volume ratio, and charge, nanoclays are investigated for various biomedical applications. Here, a critical overview of the physical, chemical, and physiological interactions of nanoclay with biological moieties, including cells, proteins, and polymers, is provided. The state‐of‐the‐art biomedical applications of 2D nanoclay in regenerative medicine, therapeutic delivery, and additive manufacturing are reviewed. In addition, recent developments that are shaping this emerging field are discussed and promising new research directions for 2D nanoclay‐based biomaterials are identified.more » « less
An official website of the United States government

