Mobile devices typically rely on entry-point and other one-time authentication mechanisms such as a password, PIN, fingerprint, iris, or face. But these authentication types are prone to a wide attack vector and worse 1 INTRODUCTION Currently smartphones are predominantly protected a patterned password is prone to smudge attacks, and fingerprint scanning is prone to spoof attacks. Other forms of attacks include video capture and shoulder surfing. Given the increasingly important roles smartphones play in e-commerce and other operations where security is crucial, there lies a strong need of continuous authentication mechanisms to complement and enhance one-time authentication such that even if the authentication at the point of login gets compromised, the device is still unobtrusively protected by additional security measures in a continuous fashion. The research community has investigated several continuous authentication mechanisms based on unique human behavioral traits, including typing, swiping, and gait. To this end, we focus on investigating physiological traits. While interacting with hand-held devices, individuals strive to achieve stability and precision. This is because a certain degree of stability is required in order to manipulate and interact successfully with smartphones, while precision is needed for tasks such as touching or tapping a small target on themore »
WACA: Wearable-Assisted Continuous Authentication
One-time login process in conventional authentication systems does not guarantee that the identified user is the actual user throughout the session. However, it is necessary to re-verify the user identity periodically throughout a login session, which is lacking in existing one-time login systems. In this paper, we introduce a usable and reliable Wearable-Assisted Continuous Authentication (WACA), which relies on the sensor-based keystroke dynamics and the authentication data is acquired through the built-in sensors of a wearable (e.g., smartwatch) while the user is typing. The acquired data is periodically and transparently compared with the registered profile of the initially logged-in user with one-way classifiers. With this, WACA continuously ensures that the current user is the user who logged-in initially. We implemented the WACA framework and evaluated its performance on real devices with real users. The empirical evaluation of WACA reveals that WACA is feasible and its error rate is as low as 1% with 30 seconds of processing time and 2 -3% for 20 seconds. The computational overhead is minimal. Furthermore, WACA is capable of identifying insider threats with very high accuracy (99.2%).
- Award ID(s):
- 1718116
- Publication Date:
- NSF-PAR ID:
- 10067220
- Journal Name:
- 3rd InternationalWorkshop on Bio-inspired Security, Trust, Assurance and Resilience co-located with 39th IEEE Symposium on Security and Privacy (IEEE S&P 2018)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unlike the younger population that uses wearables such as smartwatches for monitoring health on a daily basis, elderly people need assistance in the use of technology and interpreting the data obtained through these smart connected frameworks. The current monitoring systems are primarily designed to monitor the physiological signals on a daily basis. The aim of this proposed research, Easy-Assist, is to help older people to maintain their emotional well-being. This research is focused on developing a wearable affective framework, which can help in detecting the emotions of the user in addition to monitoring their physiological signals. The proposed framework can be used in an automated assisted living environment, where the user's emotional state can be balanced using a haptic-based emotional elicitation system after the user's emotion is recognized, detected and interpreted in real-time. The proposed framework is validated using a fall detection algorithm deployed in a custom-built watch wearable, built using off-the-shelf components and an emotion detection framework built using a single board computer. A dataset of 21700 samples acquired using the proposed framework yielded a maximum efficiency of 97.25%, 96 %, and 94 %, in classifying the state and emotion classes into Alert, Active and Normal classes respectively, usingmore »
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »
-
Despite that tremendous progress has been made in mobile user authentication (MUA) in recent years, continuous mobile user authentication (CMUA), in which authentication is performed continuously after initial login, remains under studied. In addition, although one-handed interaction with a mobile device becomes increasingly common, one-handed CMUA has never been investigated in the literature. There is a lack of investigation of the CMUA performance between one-handed and two-handed interactions. To fill the literature gap, we developed a new CMUA method based on touch dynamics of thumb scrolling on the touchscreen of a mobile device. We developed a mobile app of the proposed CMUA method and evaluated its effectiveness with data collected from a user study. The findings have implications for the design of effective CMUA using touch dynamics and for improvement of accessibility and usability of MUA mechanisms.
-
Account recovery is ubiquitous across web applications but circumvents the username/password-based login step. Therefore, it deserves the same level of security as the user authentication process. A common simplistic procedure for account recovery requires that a user enters the same email used during registration, to which a password recovery link or a new username could be sent. Therefore, an impostor with access to a user’s registration email and other credentials can trigger an account recovery session to take over the user’s account. To prevent such attacks, beyond validating the email and other credentials entered by the user, our proposed recovery method utilizes keystroke dynamics to further secure the account recovery mechanism. Keystroke dynamics is a type of behavioral biometrics that uses the analysis of typing rhythm for user authentication. Using a new dataset with over 500,000 keystrokes collected from 44 students and university staff when they fill out an account recovery web form of multiple fields, we have evaluated the performance of five scoring algorithms on individual fields as well as feature-level fusion and weighted-score fusion. We achieve the best EER of 5.47% when keystroke dynamics from individual fields are used, 0% for a feature-level fusion of five fields, andmore »