skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrologic Characteristics of Streamflow in the Southeast Atlantic and Gulf Coast Hydrologic Region during 1939–2016 and Conceptual Map of Potential Impacts
Streamflow is one the most important variables controlling and maintaining aquatic ecosystem integrity, diversity, and sustainability. This study identified and quantified changes in 34 hydrologic characteristics and parameters at 30 long term (1939–2016) discharge stations in the Southeast Atlantic and Gulf Coast Hydrologic Region (Region 3) using Indicators of Hydrologic Alteration (IHA) variables. The southeastern United States (SEUS) is a biodiversity hotspot, and the region has experienced a number of rapid land use/land cover changes with multiple primary drivers. Studies in the SEUS have been mostly localized on specific rivers, reservoir catchments and/or species, but the overall region has not been assessed for the long-term period of 1939–2016 for multiple hydrologic characteristic parameters. The objectives of the study were to provide an overview of multiple river basins and 31 hydrologic characteristic parameters of streamflow in Region 3 for a longer period and to develop a conceptual map of impacts of selected stressors and changes in hydrology and climate in the SEUS. A seven step procedure was used to accomplish these objectively: Step 1: Download data from the 30 USGS gauging stations. Steps 2 and 3: Select and analyze the 31 IHA parameters using boxplots, scatter plots, and PDFs. Steps 4 and 5: Synthesize the drivers of changes and alterations and the various change points in streamflow in the literature. Step 6: Synthesize the climate of the SEUS in terms of temperature and precipitation changes. Step 7: Develop a conceptual map of impacts of selected stressors on hydrology using Driver–Pressure–State-Impact–Response (DPSIR) framework and IHA parameters. The 31 IHA parameters were analyzed. The meta-analysis of literature in the SEUS revealed the precipitation changes observed ranged from −30% to +35% and temperature changes from −2 °C to 6 °C by 2099. The fiftieth percentile of the Global Climate Models (GCM) predict no precipitation change and an increase in the temperature of 2.5 °C in the region by 2099. Among the GCMs, the 5th and 95th percentile of precipitation changes range between −40% and 110% and temperature changes between −2 °C and 6 °C by 2099. Meta-analysis of land use/land cover show the region has experienced changes. A number of rapid land use/land cover changes in 1957, 1970, and 1998 are some of the change points documented in the literature for precipitation and streamflow in the region. A conceptual map was developed to represent the impacts of selected drivers and the changes in hydrology and climate in the study region for three land use/land cover categories in three different periods.  more » « less
Award ID(s):
1735235
PAR ID:
10067567
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Hydrology
Volume:
5
Issue:
3
ISSN:
2306-5338
Page Range / eLocation ID:
42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000–69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30–200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales. 
    more » « less
  2. Land use change analysis provides valuable information for landscape monitoring, managing, and prioritizing large area conservation practices. There has been significant interest in the southeastern United States (SEUS) due to substantial land change from various economic activities since the 1940s. This study uses quantitative data from the Economic Research Service (ERS) for landscape change analysis, addressing land change among five major land types for twelve states in the SEUS from 1945 to 2012. The study also conducted a literature review using the PSALSAR framework to identify significant drivers related to land type changes from research articles within the region. The analysis showed how each land type changed over the period for each state in the time period and the percentage change for the primary drivers related to land use change. The literature review identified significant drivers of land use and land cover change (LULCC) within the SEUS. The associated drivers were categorized into natural and artificial drivers, then further subdivided into eight categories related to land type changes in the region. A schematic diagram was developed to show land type changes that impacted environmental changes from various studies in the SEUS. The results concluded that Forest land accounted for 12% change and agricultural land for 20%; population growth in the region is an average of 2.59% annually. It also concluded that the need for research to understand past land use trends, direction and magnitude of land cover changes is essential. Significant drivers such as urban expansion and agriculture are critical to the impending use of land in the region; their impacts are attributed to environmental changes in the region and must be monitored. 
    more » « less
  3. Abstract. Assessing impacts of climate change on hydrologic systemsis critical for developing adaptation and mitigation strategies for waterresource management, risk control, and ecosystem conservation practices. Suchassessments are commonly accomplished using outputs from a hydrologic modelforced with future precipitation and temperature projections. The algorithmsused for the hydrologic model components (e.g., runoff generation) canintroduce significant uncertainties into the simulated hydrologic variables.Here, a modeling framework was developed that integrates multiple runoffgeneration algorithms with a routing model and associated parameteroptimizations. This framework is able to identify uncertainties from bothhydrologic model components and climate forcings as well as associatedparameterization. Three fundamentally different runoff generationapproaches, runoff coefficient method (RCM, conceptual), variableinfiltration capacity (VIC, physically based, infiltration excess), andsimple-TOPMODEL (STP, physically based, saturation excess), were coupledwith the Hillslope River Routing model to simulate surface/subsurface runoffand streamflow. A case study conducted in Santa Barbara County, California,reveals increased surface runoff in February and March but decreasedrunoff in other months, a delayed (3 d, median) and shortened (6 d,median) wet season, and increased daily discharge especially for theextremes (e.g., 100-year flood discharge, Q100). The Bayesian modelaveraging analysis indicates that the probability of such an increase can be up to85 %. For projected changes in runoff and discharge, general circulationmodels (GCMs) and emission scenarios are two major uncertainty sources,accounting for about half of the total uncertainty. For the changes inseasonality, GCMs and hydrologic models are two major uncertaintycontributors (∼35 %). In contrast, the contribution ofhydrologic model parameters to the total uncertainty of changes in thesehydrologic variables is relatively small (<6 %), limiting theimpacts of hydrologic model parameter equifinality in climate change impactanalysis. This study provides useful information for practices associatedwith water resources, risk control, and ecosystem conservation and forstudies related to hydrologic model evaluation and climate change impactanalysis for the study region as well as other Mediterranean regions. 
    more » « less
  4. Abstract Urbanisation is an important driver of changes in streamflow. These changes are not uniform across catchments due to the diverse nature of water sources, storage, and pathways in urban river systems. While land cover data are typically used in urban hydrology analyses, other characteristics of urban systems (such as water management practices) are poorly quantified which means that urbanisation impacts on streamflow are often difficult to detect and quantify. Here, we assess urban impacts on streamflow dynamics for 711 catchments across England and Wales. We use the CAMELS-GB dataset, which is a large-sample hydrology dataset containing hydro-meteorological timeseries and catchment attributes characterising climate, geology, water management practices and land cover. We quantify urban impacts on a wide range of streamflow dynamics (flow magnitudes, variability, frequency, and duration) using random forest models. We demonstrate that wastewater discharges from sewage treatment plants and urban land cover dominate urban hydrology signals across England and Wales. Wastewater discharges increase low flows and reduce flashiness in urban catchments. In contrast, urban land cover increases flashiness and frequency of medium and high flow events. We highlight the need to move beyond land cover metrics and include other features of urban river systems in hydrological analyses to quantify current and future drivers of urban streamflow. 
    more » « less
  5. Hydroclimate and terrestrial hydrology greatly influence the local community, ecosystem, and economy in Alaska and Yukon River Basin. A high‐resolution simulation of the historical climate in Alaska can provide an important benchmark for climate change studies. In this study, we utilized the Regional Arctic System Model (RASM) and conducted coupled land‐atmosphere modeling for Alaska and Yukon River Basin at 4‐km grid spacing. In RASM, the land model was replaced with the Community Terrestrial Systems Model (CTSM) given its comprehensive process representations for cold regions. The microphysics schemes in the Weather Research and Forecast (WRF) atmospheric model were manually tuned for optimal model performance. This study aims to maintain good model performance for both hydroclimate and terrestrial hydrology, especially streamflow, which was rarely a priority in coupled models. Therefore, we implemented a strategy of iterative testing and optimization of CTSM. A multi‐decadal climate data set (1990–2021) was generated using RASM with optimized land parameters and manually tuned WRF microphysics. When evaluated against multiple observational data sets, this data set well captures the climate statistics and spatial distributions for five key weather variables and hydrologic fluxes, including precipitation, air temperature, snow fraction, evaporation‐to‐precipitation ratios, and streamflow. The simulated precipitation shows wet bias during the spring season and simulated air temperatures exhibit dampened seasonality with warm biases in winter and cold biases in summer. We used transfer entropy to investigate the discrepancy in connectivity of hydrologic and energy fluxes between the offline CTSM and coupled models, which contributed to their discrepancy in streamflow simulations. 
    more » « less