skip to main content


Title: Calcium ion-assisted lipid tubule formation
Self-assembled lipid tubules are unique supramolecular structures in cell functions. Lipid tubules that are engineered in vitro are of great interest for technological applications ranging from the templated synthesis of nanomaterials to drug delivery. Herein, we report a study to create long lipid tubules from a mono-unsaturated lipid, 1-stearoyl-2-oleoyl- sn-glycero -3-phosphocholine (SOPC), due to the effect of calcium ions. We found that calcium ions at mM concentrations promote the self-assembly of SOPC lipids into inter-connected hollow lipid tubes that are μm thick and as long as a few millimeters. Higher calcium concentration leads to an increase in the numbers of lipid tubules formed, but has little effect on tubule diameter. Calcium ions also stabilize lipid tubules, which break up upon the removal of ions. We showed that the lipid tubule-promoting effect is general for divalent ions. We were able to vary the morphology of lipid tubules from thin tube to “strings of pearls” structures or increase the tubule thickness by mixing SOPC with other lipids of different spontaneous curvature effects. Our results reveal that the divalent charges of calcium ions and the asymmetric mono-unsaturated structure of SOPC acyl chains act in combination to cause the formation of lipid tubules.  more » « less
Award ID(s):
1705384
NSF-PAR ID:
10067639
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Chemistry Frontiers
Volume:
2
Issue:
3
ISSN:
2052-1537
Page Range / eLocation ID:
603 to 608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Epithelial calcium channel TRPV6 is a member of the vanilloid subfamily of TRP channels that is permeable to cations and highly selective to Ca2+; it shows constitutive activity regulated negatively by Ca2+and positively by phosphoinositol and cholesterol lipids. In this review, we describe the molecular structure of TRPV6 and discuss how its structural elements define its unique functional properties. High Ca2+selectivity of TRPV6 originates from the narrow selectivity filter, where Ca2+ions are directly coordinated by a ring of anionic aspartate side chains. Divalent cations Ca2+and Ba2+permeate TRPV6 pore according to the knock‐off mechanism, while tight binding of Gd3+to the aspartate ring blocks the channel and prevents Na+from permeating the pore. The iris‐like channel opening is accompanied by an α‐to‐π helical transition in the pore‐lining transmembrane helix S6. As a result of this transition, the intracellular halves of the S6 helices bend and rotate by about 100 deg, exposing different residues to the channel pore in the open and closed states. Channel opening is also associated with changes in occupancy of the transmembrane domain lipid binding sites. The inhibitor 2‐aminoethoxydiphenyl borate (2‐APB) binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1‐S4 transmembrane helical bundle and shifts open‐closed channel equilibrium towards the closed state by outcompeting lipids critical for activation. Ca2+inhibits TRPV6 via binding to calmodulin (CaM), which mediates Ca2+‐dependent inactivation. The TRPV6‐CaM complex exhibits 1:1 stoichiometry; one TRPV6 tetramer binds both CaM lobes, which adopt a distinct head‐to‐tail arrangement. The CaM C‐terminal lobe plugs the channel through a unique cation‐π interaction by inserting the side chain of lysine K115 into a tetra‐tryptophan cage at the ion channel pore intracellular entrance. Recent studies of TRPV6 structure and function described in this review advance our understanding of the role of this channel in physiology and pathophysiology and inform new therapeutic design.image

     
    more » « less
  2. In contrast to most self-assembling synthetic materials, which undergo unbounded growth, many biological self-assembly processes are self-limited. That is, the assembled structures have one or more finite dimensions that are much larger than the size scale of the individual monomers. In many such cases, the finite dimension is selected by a preferred curvature of the monomers, which leads to self-closure of the assembly. In this article, we study an example class of self-closing assemblies: cylindrical tubules that assemble from triangular monomers. By combining kinetic Monte Carlo simulations, free energy calculations, and simple theoretical models, we show that a range of programmable size scales can be targeted by controlling the intricate balance between the preferred curvature of the monomers and their interaction strengths. However, their assembly is kinetically controlled—the tubule morphology is essentially fixed shortly after closure, resulting in a distribution of tubule widths that is significantly broader than the equilibrium distribution. We develop a simple kinetic model based on this observation and the underlying free-energy landscape of assembling tubules that quantitatively describes the distributions. Our results are consistent with recent experimental observations of tubule assembly from triangular DNA origami monomers. The modeling framework elucidates design principles for assembling self-limited structures from synthetic components, such as artificial microtubules that have a desired width and chirality. 
    more » « less
  3. Abstract. Elevated organic matter (OM) concentrations are found in hadalsurface sediments relative to the surrounding abyssal seabed. However, theorigin of this biological material remains elusive. Here, we report on thecomposition and distribution of cellular membrane intact polar lipids (IPLs)extracted from surface sediments around the deepest points of the AtacamaTrench and adjacent bathyal margin to assess and constrain the sources oflabile OM in the hadal seabed. Multiscale bootstrap resampling of IPLs'structural diversity and abundance indicates distinct lipid signatures inthe sediments of the Atacama Trench that are more closely related to thosefound in bathyal sediments than to those previously reported for the upperocean water column in the region. Whereas the overall number of unique IPLstructures in hadal sediments contributes a small fraction of the total IPLpool, we also report a high contribution of phospholipids with mono- anddi-unsaturated fatty acids that are not associated with photoautotrophicsources and that resemble traits of physiological adaptation to highpressure and low temperature. Our results indicate that IPLs in hadalsediments of the Atacama Trench predominantly derive from in situ microbialproduction and biomass, whereas the export of the most labile lipidcomponent of the OM pool from the euphotic zone and the overlying oxygenminimum zone is neglectable. While other OM sources such as the downslopeand/or lateral transport of labile OM cannot be ruled out and remain to bestudied, they are likely less important in view of the lability ofester-bond IPLs. Our results contribute to the understanding of themechanisms that control the delivery of labile OM to this extreme deep-seaecosystem. Furthermore, they provide insights into some potentialphysiological adaptation of the in situ microbial community to high pressure andlow temperature through lipid remodeling. 
    more » « less
  4. Rationale

    Free fatty acids and lipid classes containing fatty acid esters are major components of lipidome. In the absence of a chemical derivatization step, FA anions do not yield all of the structural information that may be of interest under commonly used collision‐induced dissociation (CID) conditions. A line of work that avoids condensed‐phase derivatization takes advantage of gas‐phase ion/ion chemistry to charge invert FA anions to an ion type that provides the structural information of interest using conventional CID. This work was motivated by the potential for significant improvement in overall efficiency for obtaining FA chain structural information.

    Methods

    A hybrid triple quadrupole/linear ion‐trap tandem mass spectrometer that has been modified to enable the execution of ion/ion reaction experiments was used to evaluate the use of 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine (ttb‐Terpy) as the ligand in divalent magnesium complexes for charge inversion of FA anions.

    Results

    Mg(ttb‐Terpy)22+complexes provide significantly improved efficiency in producing structurally informative products from FA ions relative to Mg(Terpy)22+complexes, as demonstrated for straight‐chain FAs, branched‐chain FAs, unsaturated FAs, and cyclopropane‐containing FAs. It was discovered that most of the structurally informative fragmentation from [FA‐H + Mg(ttb‐Terpy)]+results from the loss of a methyl radical from the ligand followed by radical‐directed dissociation (RDD), which stands in contrast to the charge‐remote fragmentation (CRF) believed to be operative with the [FA‐H + Mg(Terpy)]+ions.

    Conclusions

    This work demonstrates that a large fraction of product ions from the CID of ions of the form [FA‐H + Mg(ttb‐Terpy)]+are derived from RDD of the FA backbone, with a very minor fraction arising from structurally uninformative dissociation channels. This ligand provides an alternative to previously used ligands for the structural characterization of FAs via CRF.

     
    more » « less
  5. Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure–property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach—combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations—we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer’s packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure–property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol’s role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid–protein interactions.

     
    more » « less